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Robust Control Toolbox Product Description
Design robust controllers for uncertain plants

Robust Control Toolbox provides functions and blocks for analyzing and tuning control
systems for performance and robustness in the presence of plant uncertainty. You can
create uncertain models by combining nominal dynamics with uncertain elements, such
as uncertain parameters or unmodeled dynamics. You can analyze the impact of plant
model uncertainty on control system performance, and identify worst-case combinations
of uncertain elements. H-infinity and mu-synthesis techniques let you design controllers
that maximize robust stability and performance.

The toolbox automatically tunes both SISO and MIMO controllers for plant models with
uncertainty. Controllers can include decentralized, fixed-structure controllers with
multiple tunable blocks spanning multiple feedback loops.

Key Features
• Modeling of systems with uncertain parameters or neglected dynamics
• Worst-case stability and performance analysis
• Automatic tuning of SISO and MIMO control systems for uncertain plants
• Robustness analysis and controller tuning in Simulink®
• H-infinity and mu-synthesis algorithms
• General-purpose LMI solvers
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Product Requirements
Robust Control Toolbox software requires that you have installed Control System
Toolbox™ software.

 Product Requirements

1-3



Modeling Uncertainty
Dealing with and understanding the effects of uncertainty are important tasks for the
control engineer. Reducing the effects of some forms of uncertainty (initial conditions,
low-frequency disturbances) without catastrophically increasing the effects of other
dominant forms (sensor noise, model uncertainty) is the primary job of the feedback
control system.

Closed-loop stability is the way to deal with the (always present) uncertainty in initial
conditions or arbitrarily small disturbances.

High-gain feedback in low-frequency ranges is a way to deal with the effects of unknown
biases and disturbances acting on the process output. In this case, you are forced to use
roll-off filters in high-frequency ranges to deal with high-frequency sensor noise in a
feedback system.

Finally, notions such as gain and phase margins (and their generalizations) help
quantify the sensitivity of stability and performance in the face of model uncertainty,
which is the imprecise knowledge of how the control input directly affects the feedback
variables.

At the heart of robust control is the concept of an uncertain LTI system. Model
uncertainty arises when system gains or other parameters are not precisely known, or
can vary over a given range. Examples of real parameter uncertainties include uncertain
pole and zero locations and uncertain gains. You can also have unstructured
uncertainties, by which is meant complex parameter variations satisfying given
magnitude bounds.

With Robust Control Toolbox software you can create uncertain LTI models as
MATLAB® objects specifically designed for robust control applications. You can build
models of complex systems by combining models of subsystems using addition,
multiplication, and division, as well as with Control System Toolbox commands like
feedback and lft.

Robust Control Toolbox software has built-in features allowing you to specify model
uncertainty simply and naturally. The primary building blocks, called uncertain elements
(or uncertain Control Design Blocks (Control System Toolbox)) are uncertain real
parameters and uncertain linear, time-invariant objects. These can be used to create
coarse and simple or detailed and complex descriptions of the model uncertainty present
within your process models.

1 Introduction
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Once formulated, high-level system robustness tools can help you analyze the potential
degradation of stability and performance of the closed-loop system brought on by the
system model uncertainty.

Summary of Robustness Analysis Tools
Function Description
ureal Create uncertain real parameter.
ultidyn Create uncertain, linear, time-invariant dynamics.
uss Create uncertain state-space object from uncertain state-

space matrices.
ufrd Create uncertain frequency response object.
loopsens Compute all relevant open and closed-loop quantities for a

MIMO feedback connection.
loopmargin Compute loop-at-a-time as well as MIMO gain and phase

margins for a multiloop system, including the simultaneous
gain/phase margins.

robgain Robustness performance of uncertain systems.
robstab Compute the robust stability margin of a nominally stable

uncertain system.
wcgain Compute the worst-case gain of a nominally stable uncertain

system.
wcmargin Compute worst-case (over uncertainty) loop-at-a-time disk-

based gain and phase margins.
wcsens Compute worst-case (over uncertainty) sensitivity of plant-

controller feedback loop.

See Also

Related Examples
• “Create Models of Uncertain Systems” on page 4-2

 See Also
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System with Uncertain Parameters
As an example of a closed-loop system with uncertain parameters, consider the two-cart
"ACC Benchmark" system [13] consisting of two frictionless carts connected by a spring
shown as follows.

ACC Benchmark Problem

The system has the block diagram model shown below, where the individual carts have
the respective transfer functions.

G s

m s

G s

m s

1

1

2

2

2

2

1

1

( ) =

( ) = .

The parameters m1, m2, and k are uncertain, equal to one plus or minus 20%:

m1 = 1 ± 0.2 
m2 = 1 ± 0.2 
k = 1 ± 0.2
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"ACC Benchmark" Two-Cart System Block Diagram y1 = P(s) u1

The upper dashed-line block has transfer function matrix F(s):

F s
G s

G s( ) =
( )

È

Î
Í

˘

˚
˙ -[ ] +

-

È

Î
Í

˘

˚
˙ ( )ÈÎ ˘̊

0
1 1

1

1
0

1

2
.

This code builds the uncertain system model P shown above:

m1 = ureal('m1',1,'percent',20);
m2 = ureal('m2',1,'percent',20);
k  = ureal('k',1,'percent',20);

s = zpk('s');
G1 = ss(1/s^2)/m1;
G2 = ss(1/s^2)/m2;

F = [0;G1]*[1 -1]+[1;-1]*[0,G2];
P = lft(F,k);

The variable P is a SISO uncertain state-space (USS) object with four states and three
uncertain parameters, m1, m2, and k. You can recover the nominal plant with the
command:

zpk(P.nominal)

 System with Uncertain Parameters
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ans =
 
        1
  -------------
  s^2 (s^2 + 2)
 
Continuous-time zero/pole/gain model.

If the uncertain model P(s) has LTI negative feedback controller

C s
s

s

( ) =
+( )

+( )

100 1

0 001 1

3

3
.

then you can form the controller and the closed-loop system y1 = T(s) u1 and view the
closed-loop system's step response on the time interval from t=0 to t=0.1 for a Monte
Carlo random sample of five combinations of the three uncertain parameters k, m1, and
m2 using this code:

C=100*ss((s+1)/(.001*s+1))^3; % LTI controller
T=feedback(P*C,1); % closed-loop uncertain system
step(usample(T,5),.1);

1 Introduction
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See Also
ureal | uss

Related Examples
• “Uncertain Real Parameters”
• “Uncertain LTI Dynamics Elements”

 See Also

1-9



Robust Stability and Worst-Case Gain of Uncertain System
This example shows how to calculate the robust stability and examine the worst-case
gain of the closed-loop system described in “System with Uncertain Parameters” on page
1-6. The following commands construct that system.
m1 = ureal('m1',1,'percent',20);
m2 = ureal('m2',1,'percent',20);
k  = ureal('k',1,'percent',20);

s = zpk('s');
G1 = ss(1/s^2)/m1;
G2 = ss(1/s^2)/m2;

F = [0;G1]*[1 -1]+[1;-1]*[0,G2];
P = lft(F,k);

C = 100*ss((s+1)/(.001*s+1))^3;

T = feedback(P*C,1); % Closed-loop uncertain system

This uncertain state-space model T has three uncertain parameters, k, m1, and m2, each
equal to 1±20% uncertain variation. Use robstab to analyze whether the closed-loop
system T is robustly stable for all combinations of possible values of these three
parameters.
[stabmarg,wcus] = robstab(T);
stabmarg

stabmarg = 

  struct with fields:

           LowerBound: 2.8828
           UpperBound: 2.8864
    CriticalFrequency: 575.0338

The data in the structure stabmarg includes bounds on the stability margin, which
indicate that the control system can tolerate almost 3 times the specified uncertainty
before going unstable. It is stable for all parameter variations in the specified ±20%
range. The critical frequency is the frequency at which the system is closest to instability.

1 Introduction
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The structure wcus contains the smallest destabilization perturbation values for each
uncertain element.

wcus

wcus = 

  struct with fields:

     k: 1.5773
    m1: 0.4227
    m2: 0.4227

You can use these values with usubs to verify that they do indeed result in an unstable
system.

Tunst = usubs(T,wcus);
isstable(Tunst)

ans =

  logical

   1

Use wcgain to calculate the worst-case peak gain, the highest peak gain occurring
within the specified uncertainty ranges.

[wcg,wcug] = wcgain(T);
wcg

wcg = 

  struct with fields:

           LowerBound: 1.0475
           UpperBound: 1.0800
    CriticalFrequency: 6.5785

 Robust Stability and Worst-Case Gain of Uncertain System
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wcug contains the values of the uncertain elements that cause the worst-case gain.
Compute a closed-loop model with these values, and plot its frequency response along
with some random samples of the uncertain system.

Twc = usubs(T,wcug);
Trand = usample(T,5);
bodemag(Twc,'b--',Trand,'c:',{.1,100});
legend('Twc - worst-case','Trand - random samples','Location','SouthWest');

Alternatively use wcsigma to visualize the highest possible gain at each frequency, the
system with the highest peak gain, and random samples of the uncertain system.

wcsigma(T,{.1,100})

1 Introduction
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See Also
robstab | wcgain | wcsigma

Related Examples
• “Robustness and Worst-Case Analysis”

 See Also
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Loop-Shaping Controller Design
One of the most powerful yet simple controller synthesis tools is loopsyn. Given an LTI
plant, you specify the shape of the open-loop systems frequency response plot that you
want. Then loopsyn computes a stabilizing controller that best approximates your
specified loop shape.

For example, consider the 2-by-2 NASA HiMAT aircraft model (Safonov, Laub, and
Hartmann [1]), depicted in the following diagram.

The control variables are elevon and canard actuators (  and ). The output variables
are angle of attack ( ) and attitude angle ( ). The model has six states, given by:

1 Introduction
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where  and  are the elevator and canard actuator states, respectively.

Create HiMAT Model

The following commands create a state-space model G of the aircraft.

ag =[ -2.2567e-02  -3.6617e+01  -1.8897e+01  -3.2090e+01   3.2509e+00  -7.6257e-01;
       9.2572e-05  -1.8997e+00   9.8312e-01  -7.2562e-04  -1.7080e-01  -4.9652e-03;
       1.2338e-02   1.1720e+01  -2.6316e+00   8.7582e-04  -3.1604e+01   2.2396e+01;
       0            0   1.0000e+00            0            0            0;
       0            0            0            0  -3.0000e+01            0;
       0            0            0            0            0  -3.0000e+01];
bg = [ 0     0;
       0     0;
       0     0;
       0     0;
       30     0;
       0    30];
cg = [ 0     1     0     0     0     0;
       0     0     0     1     0     0];
dg = [ 0     0;
       0     0];
G = ss(ag,bg,cg,dg);

Design Controller

To design a controller to shape the frequency response (singular-value) plot so that the
system has approximately a bandwidth of 10 rad/s, specify your target desired loop shape

. Then use loopsyn to find a loop-shaping controller for G that optimally
matches the desired loop shape Gd.

s = zpk('s');
w0 = 10;
Gd = w0/(s+.001);
[K,CL,GAM] = loopsyn(G,Gd);

 Loop-Shaping Controller Design
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Examine the open-loop frequency response with the resulting controller, K.

sigma(G*K,'r',Gd,'k-.',Gd/GAM,'k:',Gd*GAM,'k:',{.1,30})
legend('Achieved Loop Shape','Target Loop Shape','Gd/GAM','Gd*GAM')

Examine the closed-loop response as well.

T = feedback(G*K,eye(2));
sigma(T,ss(GAM),'r*',{.1,30});
legend('Closed loop','GAM')
grid

1 Introduction
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The returned value GAM is an indicator of the accuracy to which the optimal loop shape
matches your desired loop shape. GAM is an upper bound on the resonant peak magnitude
of the closed-loop transfer function T = feedback(G*K,eye(2)). In this case, GAM =
1.6024 = 4 dB, as the singular value plots show. The plots also show that the achieved
loop shape matches the desired target Gd to within about GAM dB.

 Loop-Shaping Controller Design
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See Also
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Model Reduction and Approximation
Complex models are not always required for good control. Unfortunately, however,
optimization methods (including methods based on H∞, H2, and µ-synthesis optimal
control theory) generally tend to produce controllers with at least as many states as the
plant model. For this reason, Robust Control Toolbox software offers you an assortment
of model-order reduction commands that help you to find less complex low-order
approximations to plant and controller models.
Model Reduction Commands
reduce Main interface to model approximation algorithms
balancmr Balanced truncation model reduction
bstmr Balanced stochastic truncation model reduction
hankelmr Optimal Hankel norm model approximations
modreal State-space modal truncation/realization
ncfmr Balanced normalized coprime factor model reduction
schurmr Schur balanced truncation model reduction
slowfast State-space slow-fast decomposition
stabsep State-space stable/antistable decomposition
imp2ss Impulse response to state-space approximation

Among the most important types of model reduction methods are minimize bounds
methods on additive, multiplicative, and normalized coprime factor (NCF) model error.
You can access all three of these methods using the command reduce.
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LMI Solvers
At the core of many emergent robust control analysis and synthesis routines are powerful
general-purpose functions for solving a class of convex nonlinear programming problems
known as linear matrix inequalities. The LMI capabilities are invoked by Robust Control
Toolbox software functions that evaluate worst-case performance, as well as functions
like hinfsyn and h2hinfsyn. Some of the main functions that help you access the LMI
capabilities of the toolbox are shown in the following table.
Specification of LMIs
lmiedit GUI for LMI specification
setlmis Initialize the LMI description
lmivar Define a new matrix variable
lmiterm Specify the term content of an LMI
newlmi Attach an identifying tag to new LMIs
getlmis Get the internal description of the LMI system
LMI Solvers
feasp Test feasibility of a system of LMIs
gevp Minimize generalized eigenvalue with LMI constraints
mincx Minimize a linear objective with LMI constraints
dec2mat Convert output of the solvers to values of matrix variables
Evaluation of LMIs/Validation of Results
evallmi Evaluate for given values of the decision variables
showlmi Return the left and right sides of an evaluated LMI
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Extends Control System Toolbox Capabilities
Robust Control Toolbox software is designed to work with Control System Toolbox
software. Robust Control Toolbox software extends the capabilities of Control System
Toolbox software and leverages the LTI and plotting capabilities of Control System
Toolbox software. The major analysis and synthesis commands in Robust Control Toolbox
software accept LTI object inputs, e.g., LTI state-space systems produced by commands
such as:

G=tf(1,[1 2 3])
G=ss([-1 0; 0 -1], [1;1],[1 1],3)

The uncertain system (USS) objects in Robust Control Toolbox software generalize the
Control System Toolbox LTI SS objects and help ease the task of analyzing and plotting
uncertain systems. You can do many of the same algebraic operations on uncertain
systems that are possible for LTI objects (multiply, add, invert), and Robust Control
Toolbox software provides USS uncertain system extensions of Control System Toolbox
software interconnection and plotting functions like feedback, lft, and bode.

 Extends Control System Toolbox Capabilities

1-21



Acknowledgments
Professor Andy Packard is with the Faculty of Mechanical Engineering at the
University of California, Berkeley. His research interests include robustness issues in
control analysis and design, linear algebra and numerical algorithms in control problems,
applications of system theory to aerospace problems, flight control, and control of fluid
flow.

Professor Gary Balas is with the Faculty of Aerospace Engineering & Mechanics at the
University of Minnesota and is president of MUSYN Inc. His research interests include
aerospace control systems, both experimental and theoretical.

Dr. Michael Safonov is with the Faculty of Electrical Engineering at the University of
Southern California. His research interests include control and decision theory.

Dr. Richard Chiang is employed by Boeing Satellite Systems, El Segundo, CA. He is a
Boeing Technical Fellow and has been working in the aerospace industry over 25 years.
In his career, Richard has designed 3 flight control laws, 12 spacecraft attitude control
laws, and 3 large space structure vibration controllers, using modern robust control
theory and the tools he built in this toolbox. His research interests include robust control
theory, model reduction, and in-flight system identification. Working in industry instead
of academia, Richard serves a unique role in our team, bridging the gap between theory
and reality.

The linear matrix inequality (LMI) portion of Robust Control Toolbox software was
developed by these two authors:

Dr. Pascal Gahinet is employed by MathWorks. His research interests include robust
control theory, linear matrix inequalities, numerical linear algebra, and numerical
software for control.

Professor Arkadi Nemirovski is with the Faculty of Industrial Engineering and
Management at Technion, Haifa, Israel. His research interests include convex
optimization, complexity theory, and nonparametric statistics.

The structured H∞ synthesis (hinfstruct) portion of Robust Control Toolbox software
was developed by the following author in collaboration with Pascal Gahinet:

Professor Pierre Apkarian is with ONERA (The French Aerospace Lab) and the
Institut de Mathématiques at Paul Sabatier University, Toulouse, France. His research

1 Introduction

1-22



interests include robust control, LMIs, mathematical programming, and nonsmooth
optimization techniques for control.

 Acknowledgments

1-23



Bibliography

[1] Boyd, S.P., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities
in Systems and Control Theory, Philadelphia, PA, SIAM, 1994.

[2] Dorato, P. (editor), Robust Control, New York, IEEE Press, 1987.

[3] Dorato, P., and Yedavalli, R.K. (editors), Recent Advances in Robust Control, New
York, IEEE Press, 1990.

[4] Doyle, J.C., and Stein, G., “Multivariable Feedback Design: Concepts for a Classical/
Modern Synthesis,” IEEE Trans. on Automat. Contr., 1981, AC-26(1), pp. 4-16.

[5] El Ghaoui, L., and Niculescu, S., Recent Advances in LMI Theory for Control,
Philadelphia, PA, SIAM, 2000.

[6] Lehtomaki, N.A., Sandell, Jr., N.R., and Athans, M., “Robustness Results in Linear-
Quadratic Gaussian Based Multivariable Control Designs,” IEEE Trans. on
Automat. Contr., Vol. AC-26, No. 1, Feb. 1981, pp. 75-92.

[7] Safonov, M.G., Stability and Robustness of Multivariable Feedback Systems,
Cambridge, MA, MIT Press, 1980.

[8] Safonov, M.G., Laub, A.J., and Hartmann, G., “Feedback Properties of Multivariable
Systems: The Role and Use of Return Difference Matrix,” IEEE Trans. of
Automat. Contr., 1981, AC-26(1), pp. 47-65.

[9] Safonov, M.G., Chiang, R.Y., and Flashner, H., “H∞ Control Synthesis for a Large
Space Structure,” Proc. of American Contr. Conf., Atlanta, GA, June 15-17, 1988.

[10] Safonov, M.G., and Chiang, R.Y., “CACSD Using the State-Space L∞ Theory — A
Design Example,” IEEE Trans. on Automatic Control, 1988, AC-33(5), pp.
477-479.

[11] Sanchez-Pena, R.S., and Sznaier, M., Robust Systems Theory and Applications, New
York, Wiley, 1998.

[12] Skogestad, S., and Postlethwaite, I., Multivariable Feedback Control, New York,
Wiley, 1996.

1 Introduction

1-24



[13] Wie, B., and Bernstein, D.S., “A Benchmark Problem for Robust Controller Design,”
Proc. American Control Conf., San Diego, CA, May 23-25, 1990; also Boston, MA,
June 26-28, 1991.

[14] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Englewood Cliffs,
NJ, Prentice Hall, 1996.

 Bibliography

1-25





Multivariable Loop Shaping

• “Tradeoff Between Performance and Robustness” on page 2-2
• “Norms and Singular Values” on page 2-4
• “Typical Loop Shapes, S and T Design” on page 2-6
• “Loop-Shaping Control Design of Aircraft Model” on page 2-14
• “Fine-Tuning the Target Loop Shape to Meet Design Goals” on page 2-21
• “Mixed-Sensitivity Loop Shaping” on page 2-23
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Tradeoff Between Performance and Robustness
When the plant modeling uncertainty is not too big, you can design high-gain, high-
performance feedback controllers. High loop gains significantly larger than 1 in
magnitude can attenuate the effects of plant model uncertainty and reduce the overall
sensitivity of the system to plant noise. But if your plant model uncertainty is so large
that you do not even know the sign of your plant gain, then you cannot use large
feedback gains without the risk that the system will become unstable. Thus, plant model
uncertainty can be a fundamental limiting factor in determining what can be achieved
with feedback.

Multiplicative Uncertainty: Given an approximate model of the plant G0 of a plant G, the

multiplicative uncertainty ΔM of the model G0 is defined as D M G G G= -( )-
0

1

0

or, equivalently,
G I GM= +( )D

0
.

Plant model uncertainty arises from many sources. There might be small unmodeled
time delays or stray electrical capacitance. Imprecisely understood actuator time
constants or, in mechanical systems, high-frequency torsional bending modes and similar
effects can be responsible for plant model uncertainty. These types of uncertainty are
relatively small at lower frequencies and typically increase at higher frequencies.

In the case of single-input/single-output (SISO) plants, the frequency at which there are
uncertain variations in your plant of size |ΔM|=2 marks a critical threshold beyond
which there is insufficient information about the plant to reliably design a feedback
controller. With such a 200% model uncertainty, the model provides no indication of the
phase angle of the true plant, which means that the only way you can reliably stabilize
your plant is to ensure that the loop gain is less than 1. Allowing for an additional factor
of 2 margin for error, your control system bandwidth is essentially limited to the
frequency range over which your multiplicative plant uncertainty ΔM has gain magnitude
|ΔM|<1.

2 Multivariable Loop Shaping
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See Also

Related Examples
• “Typical Loop Shapes, S and T Design” on page 2-6

 See Also
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Norms and Singular Values
For MIMO systems the transfer functions are matrices, and relevant measures of gain
are determined by singular values, H∞, and H2 norms, which are defined as follows:

H2 and H∞ Norms The H2-norm is the energy of the impulse response of plant G. The H∞-
norm is the peak gain of G across all frequencies and all input directions.

Another important concept is the notion of singular values.

Singular Values: The singular values of a rank r matrix A C
m n

Œ
¥ , denoted σi, are the

nonnegative square roots of the eigenvalues of A A
*  ordered such that σ1 ≥ σ2 ≥ ... ≥σp > 0,

p ≤ min{m, n}.

If r < p then there are p – r zero singular values, i.e., σr+1 = σr+2 = ... =σp = 0.

The greatest singular value σ1 is sometimes denoted
s sA( ) =

1
.

When A is a square n-by-n matrix, then the nth singular value (i.e., the least singular
value) is denoted
s sA n( ) @ .

Properties of Singular Values

Some useful properties of singular values are:

s

s

A
Ax

x

A
Ax

x

x C

x C

h

h

( ) =

( ) =

Œ

Œ

max

min
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These properties are especially important because they establish that the greatest and
least singular values of a matrix A are the maximal and minimal "gains" of the matrix as
the input vector x varies over all possible directions.

For stable continuous-time LTI systems G(s), the H2-norm and the H∞-norms are defined
terms of the frequency-dependent singular values of G(jω):

H2-norm:

G G j di
i

p

2

2

1

1

2
@

p
s w w

È

ÎÍ
˘

˚̇
( )( )( )

=
-•

•
ÂÚ

H∞-norm:
G G j

•
( )( )@ sup

w

s w

where sup denotes the least upper bound.

See Also
“Interpretation of H-Infinity Norm” on page 5-2

 See Also
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Typical Loop Shapes, S and T Design
Consider the multivariable feedback control system shown in the following figure. In
order to quantify the multivariable stability margins and performance of such systems,
you can use the singular values of the closed-loop transfer function matrices from r to
each of the three outputs e, u, and y, viz.

S s I L s

R s K s I L s

T s L s I L s

def

def

def

( ) = + ( )( )

( ) = ( ) + ( )( )

( ) = ( ) + ( )

-

-

1

1

(( ) = - ( )
-1

I S s

where the L(s) is the loop transfer function matrix

L s G s K s( ) = ( ) ( ) .

Block Diagram of the Multivariable Feedback Control System

The two matrices S(s) and T(s) are known as the sensitivity function and complementary
sensitivity function, respectively. The matrix R(s) has no common name. The singular
value Bode plots of each of the three transfer function matrices S(s), R(s), and T(s) play
an important role in robust multivariable control system design. The singular values of
the loop transfer function matrix L(s) are important because L(s) determines the
matrices S(s) and T(s).

Robustness in Terms of Singular Values
The singular values of S(jω) determine the disturbance attenuation, because S(s) is in
fact the closed-loop transfer function from disturbance d to plant output y — see “Block

2 Multivariable Loop Shaping
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Diagram of the Multivariable Feedback Control System” on page 2-6. Thus a disturbance
attenuation performance specification can be written as

s w wS j W j( )( ) £ ( )-
1

1

where W j
1

1- ( )w  is the desired disturbance attenuation factor. Allowing W j1 w( )  to
depend on frequency ω enables you to specify a different attenuation factor for each
frequency ω.

The singular value Bode plots of R(s) and of T(s) are used to measure the stability
margins of multivariable feedback designs in the face of additive plant perturbations ΔA
and multiplicative plant perturbations ΔM, respectively. See the following figure.

Consider how the singular value Bode plot of complementary sensitivity T(s) determines
the stability margin for multiplicative perturbations ΔM. The multiplicative stability
margin is, by definition, the "size" of the smallest stable ΔM(s) that destabilizes the
system in the figure below when ΔA = 0.

Additive/Multiplicative Uncertainty

Taking s wDM j( )( )  to be the definition of the "size" of ΔM(jω), you have the following
useful characterization of "multiplicative" stability robustness:

 Typical Loop Shapes, S and T Design
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Multiplicative Robustness: The size of the smallest destabilizing multiplicative
uncertainty ΔM(s) is:

s w
s w

DM j
T j

( )( ) =
( )( )
1

.

The smaller is s wT j( )( ) , the greater will be the size of the smallest destabilizing
multiplicative perturbation, and hence the greater will be the stability margin.

A similar result is available for relating the stability margin in the face of additive plant

perturbations ΔA(s) to R(s) if you take s wDA j( )( )  to be the definition of the "size" of
ΔA(jω) at frequency ω.

Additive Robustness: The size of the smallest destabilizing additive uncertainty ΔA is:

s w
s w

DA j
R j

( )( ) =
( )( )
1

.

As a consequence of robustness theorems 1 and 2, it is common to specify the stability
margins of control systems via singular value inequalities such as

s w wR j W j{ }( ) £ ( )-
2

1

s w wT j W j{ }( ) £ ( )-
3

1

where |W2(jω)| and |W3(jω)| are the respective sizes of the largest anticipated additive
and multiplicative plant perturbations.

It is common practice to lump the effects of all plant uncertainty into a single fictitious
multiplicative perturbation ΔM, so that the control design requirements can be written

1
1 3

1

s w
w s w w

i
i

S j
W j T j W j

( )( )
≥ ( ) [ ]( ) £ ( )-

;

as shown in “Singular Value Specifications on L, S, and T” on page 2-11.
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It is interesting to note that in the upper half of the figure (above the 0 dB line),

s w
s w

L j
S j

( )( ) ª
( )( )
1

while in the lower half of “Singular Value Specifications on L, S, and T” on page 2-11
(below the 0 dB line),
s w s wL j T j( )( ) ª ( )( ).

This results from the fact that

S s I L s L s
def

( ) = + ( )( ) ª ( )
- -1 1

if s L s( )( )? 1 , and

T s L s I L s L s
def

( ) = ( ) + ( )( ) ª ( )
-1

if s L s( )( ) = 1 .
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Singular Value Specifications on L, S, and T

Thus, it is not uncommon to see specifications on disturbance attenuation and
multiplicative stability margin expressed directly in terms of forbidden regions for the
Bode plots of σi(L(jω)) as "singular value loop shaping" requirements, either as specified
upper/lower bounds or as a target desired loop shape — see the preceding figure.

Guaranteed Gain/Phase Margins in MIMO Systems

For those who are more comfortable with classical single-loop concepts, there are the

important connections between the multiplicative stability margins predicted by s T( )
and those predicted by classical M-circles, as found on the Nichols chart. Indeed in the
single-input/single-output case,

 Typical Loop Shapes, S and T Design
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s w
w

w
T j

L j

L j
( )( ) =

( )

+ ( )1

which is precisely the quantity you obtain from Nichols chart M-circles. Thus, T
•

 is a
multiloop generalization of the closed-loop resonant peak magnitude which, as classical
control experts will recognize, is closely related to the damping ratio of the dominant

closed-loop poles. Also, it turns out that you can relate T
•

, S
•

 to the classical gain
margin GM and phase margin θM in each feedback loop of the multivariable feedback
system of “Block Diagram of the Multivariable Feedback Control System” on page 2-6 via
the formulas:

G
T

G

S

T

T

M

M

M

M

≥ +

≥ +
-

≥
Ê

Ë
ÁÁ

ˆ

¯
˜̃

≥
Ê

Ë
Á
Á

ˆ

•

•

-

•

-

•

1
1

1
1

1
1

2
1

2

2
1

2

1

1

q

q

sin

sin

¯̄
˜
˜
.

(See [6].) These formulas are valid provided S
•

 and T
•

 are larger than 1, as is
normally the case. The margins apply even when the gain perturbations or phase
perturbations occur simultaneously in several feedback channels.

The infinity norms of S and T also yield gain reduction tolerances. The gain reduction
tolerance gm is defined to be the minimal amount by which the gains in each loop would
have to be decreased in order to destabilize the system. Upper bounds on gm are as
follows:
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g

S

M

M

£ -

£

+

•

•

1
1

1

1
1

.

Using LOOPSYN to Do H-Infinity Loop Shaping

The command loopsyn lets you design a stabilizing feedback controller to optimally
shape the open loop frequency response of a MIMO feedback control system to match as
closely as possible a desired loop shape Gd. The basic syntax of the loopsyn loop-
shaping controller synthesis command is:

K = loopsyn(G,Gd)

Here G is the LTI transfer function matrix of a MIMO plant model, Gd is the target
desired loop shape for the loop transfer function L=G*K, and K is the optimal loop-shaping
controller. The LTI controller K has the property that it shapes the loop L=G*K so that it
matches the frequency response of Gd as closely as possible, subject to the constraint that
the compensator must stabilize the plant model G.

See Also
loopsyn

Related Examples
• “Loop-Shaping Control Design of Aircraft Model” on page 2-14

 See Also
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Loop-Shaping Control Design of Aircraft Model
To see how the loopsyn command works in practice to address robustness and
performance tradeoffs, consider again the NASA HiMAT aircraft model taken from the
paper of Safonov, Laub, and Hartmann [8]. The longitudinal dynamics of the HiMAT
aircraft trimmed at 25000 ft and 0.9 Mach are unstable and have two right-half-plane
phugoid modes. The linear model has state-space realization G(s) = C(Is – A)–1B with six
states, with the first four states representing angle of attack (α) and attitude angle (θ)
and their rates of change, and the last two representing elevon and canard control
actuator dynamics — see “Aircraft Configuration and Vertical Plane Geometry” on page
2-15.

ag = [
-2.2567e-02  -3.6617e+01  -1.8897e+01  -3.2090e+01   3.2509e+00  -7.6257e-01;
9.2572e-05  -1.8997e+00   9.8312e-01  -7.2562e-04  -1.7080e-01  -4.9652e-03;
1.2338e-02   1.1720e+01  -2.6316e+00   8.7582e-04  -3.1604e+01   2.2396e+01;
0            0   1.0000e+00            0            0            0;
0            0            0            0  -3.0000e+01            0;
0            0            0            0            0  -3.0000e+01];
bg = [0     0;
      0     0;
      0     0;
      0     0;
     30     0;
      0    30];
cg = [0     1     0     0     0     0;
      0     0     0     1     0     0];
dg = [0     0;
      0     0];
G = ss(ag,bg,cg,dg);

The control variables are elevon and canard actuators (δe and δc). The output variables
are angle of attack (α) and attitude angle (θ).

2 Multivariable Loop Shaping
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Aircraft Configuration and Vertical Plane Geometry

This model is good at frequencies below 100 rad/s with less than 30% variation between
the true aircraft and the model in this frequency range. However as noted in [8], it does
not reliably capture very high-frequency behaviors, because it was derived by treating
the aircraft as a rigid body and neglecting lightly damped fuselage bending modes that
occur at somewhere between 100 and 300 rad/s. These unmodeled bending modes might
cause as much as 20 dB deviation (i.e., 1000%) between the frequency response of the
model and the actual aircraft for frequency ω > 100 rad/s. Other effects like control
actuator time delays and fuel sloshing also contribute to model inaccuracy at even higher
frequencies, but the dominant unmodeled effects are the fuselage bending modes. You
can think of these unmodeled bending modes as multiplicative uncertainty of size 20 dB,
and design your controller using loopsyn, by making sure that the loop has gain less than
–20 dB at, and beyond, the frequency ω > 100 rad/s.

 Loop-Shaping Control Design of Aircraft Model
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Design Specifications

The singular value design specifications are

• Robustness Spec.: –20 dB/decade roll-off slope and –20 dB loop gain at 100 rad/s
• Performance Spec.: Minimize the sensitivity function as much as possible.

Both specs can be accommodated by taking as the desired loop shape

Gd(s)=8/s

MATLAB Commands for a LOOPSYN Design
s = zpk('s'); % Laplace variable s
Gd = 8/s; % desired loop shape
% Compute the optimal loop shaping controller K
[K,CL,GAM] = loopsyn(G,Gd);
% Compute the loop L, sensitivity S and complementary sensitivity T:
L = G*K;
I = eye(size(L));
S = feedback(I,L); % S=inv(I+L);
T = I-S;
% Plot the results:
% step response plots
step(T);title('\alpha and \theta command step responses');

2 Multivariable Loop Shaping
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% frequency response plots
figure;
sigma(L,'r--',Gd,'k-.',Gd/GAM,'k:',Gd*GAM,'k:',{.1,100})
legend('\sigma(L) loopshape',...
    '\sigma(Gd) desired loop',...
    '\sigma(Gd) \pm GAM, dB');

 Loop-Shaping Control Design of Aircraft Model
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figure;
sigma(T,I+L,'r--',{.1,100})
legend('\sigma(T) robustness','1/\sigma(S) performance')

2 Multivariable Loop Shaping
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The number ±GAM, dB (i.e., 20log10(GAM)) tells you the accuracy with which your
loopsyn control design matches the target desired loop:
s w w

s w w

GK

GK

c

c

( ) ≥ - <

( ) ≥ + >

, , , ( )

, , , ( ).

db G db GAM db 

db G db GAM db 

d

d

See Also
loopsyn
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Related Examples
• “Fine-Tuning the Target Loop Shape to Meet Design Goals” on page 2-21
• “Tradeoff Between Performance and Robustness” on page 2-2
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Fine-Tuning the Target Loop Shape to Meet Design Goals
If your first attempt at loopsyn design does not achieve everything you wanted, you will
need to readjust your target desired loop shape Gd. Here are some basic design tradeoffs
to consider:

• Stability Robustness. Your target loop Gd should have low gain (as small as
possible) at high frequencies where typically your plant model is so poor that its
phase angle is completely inaccurate, with errors approaching ±180° or more.

• Performance. Your Gd loop should have high gain (as great as possible) at
frequencies where your model is good, in order to ensure good control accuracy and
good disturbance attenuation.

• Crossover and Roll-Off. Your desired loop shape Gd should have its 0 dB crossover
frequency (denoted ωc) between the above two frequency ranges, and below the
crossover frequency ωc it should roll off with a negative slope of between –20 and –40
dB/decade, which helps to keep phase lag to less than –180° inside the control loop
bandwidth (0 < ω < ωc).

Other considerations that might affect your choice of Gd are the right-half-plane poles
and zeros of the plant G, which impose ffundamental limits on your 0 dB crossover
frequency ωc [12]. For instance, your 0 dB crossover ωc must be greater than the
magnitude of any plant right-half-plane poles and less than the magnitude of any right-
half-plane zeros.

max min .
Re Rep

i c
z

i
i i

p z
( )> ( )>

< <
0 0

w

If you do not take care to choose a target loop shape Gd that conforms to these
fundamental constraints, then loopsyn will still compute the optimal loop-shaping
controller K for your Gd, but you should expect that the optimal loop L=G*K will have a
poor fit to the target loop shape Gd, and consequently it might be impossible to meet your
performance goals.

See Also
loopsyn
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Related Examples
• “Loop-Shaping Control Design of Aircraft Model” on page 2-14
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Mixed-Sensitivity Loop Shaping
A popular alternative approach to loopsyn loop shaping is H∞ mixed-sensitivity loop
shaping, which is implemented by the Robust Control Toolbox software command:

K=mixsyn(G,W1,[],W3)

With mixsyn controller synthesis, your performance and stability robustness
specifications equations (2-2) on page 2-7 and (2-4) on page 2-8 are combined into a single
infinity norm specification of the form
Ty u

1 1

1
•

£

where (see “MIXSYN H∞ Mixed-Sensitivity Loop Shaping Ty1 u1” on page 2-24):

T
W S

W Ty u

def

1 1

1

3

=
È

Î
Í

˘

˚
˙.

The term Ty u
1 1 •

 is called a mixed-sensitivity cost function because it penalizes both
sensitivity S(s) and complementary sensitivity T(s). Loop shaping is achieved when you
choose W1 to have the target loop shape for frequencies ω < ωc, and you choose 1/W3 to be
the target for ω > ωc. In choosing design specifications W1 and W3 for a mixsyn controller
design, you need to ensure that your 0 dB crossover frequency for the Bode plot of W1 is
below the 0 dB crossover frequency of 1/W3, as shown in “Singular Value Specifications
on L, S, and T” on page 2-11, so that there is a gap for the desired loop shape Gd to pass

between the performance bound W1 and your robustness bound W
3

1- . Otherwise, your
performance and robustness requirements will not be achievable.
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MIXSYN H∞ Mixed-Sensitivity Loop Shaping Ty1 u1

Mixed-Sensitivity Loop-Shaping Controller Design

To do a mixsyn H∞ mixed-sensitivity synthesis design on the HiMAT model, start with
the plant model G discussed in “Mixed-Sensitivity Loop-Shaping Controller Design” on
page 2-24. The following code recreates that plant model.

ag =[ -2.2567e-02  -3.6617e+01 -1.8897e+01  -3.2090e+01   3.2509e+00  -7.6257e-01;
       9.2572e-05  -1.8997e+00   9.8312e-01  -7.2562e-04  -1.7080e-01 -4.9652e-03;
       1.2338e-02   1.1720e+01  -2.6316e+00   8.7582e-04  -3.1604e+01  2.2396e+01;
       0            0            1.0000e+00   0            0           0;
       0            0            0            0           -3.0000e+01  0;
       0            0            0            0            0  -3.0000e+01];
bg = [ 0     0;
       0     0;
       0     0;
       0     0;
       30     0;
       0    30];
cg = [ 0     1     0     0     0     0;
       0     0     0     1     0     0];
dg = [ 0     0;
       0     0];
G = ss(ag,bg,cg,dg);
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Set up the performance and robustness bounds, W1 and W3.

s = zpk('s'); % Laplace variable s
MS = 2; AS = .03; WS = 5;
W1 = (s/MS+WS)/(s+AS*WS);
MT = 2; AT = .05; WT = 20;
W3 = (s+WT/MT)/(AT*s+WT);

Compute the H-infinity mixed-sensitivity optimal controller K1 using mixsyn.

[K1,CL1,GAM1] = mixsyn(G,W1,[],W3);

Next compute responses of the closed-loop system. Compute the loop L1, sensitivity S1,
and complementary sensitivity T1.

L1 = G*K1;
I = eye(size(L1));
S1 = feedback(I,L1); % S=inv(I+L1);
T1 = I-S1;

Finally, plot time-domain and frequency-domain responses.

step(T1,1.5);
title('\alpha and \theta command step responses');
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figure;
sigma(I+L1,'--',T1,':',L1,'r--',W1/GAM1,'k--',GAM1/W3,'k-.',{.1,100})
legend('1/\sigma(S) performance','\sigma(T) robustness','\sigma(L) loopshape',...
       '\sigma(W1) performance bound','\sigma(1/W3) robustness bound')
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See Also
mixsyn

Related Examples
• “Loop-Shaping Control Design of Aircraft Model” on page 2-14

 See Also
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Model Reduction for Robust Control

• “Why Reduce Model Order?” on page 3-2
• “Hankel Singular Values” on page 3-3
• “Model Reduction Techniques” on page 3-6
• “Approximate Plant Model by Additive Error Methods” on page 3-8
• “Approximate Plant Model by Multiplicative Error Method” on page 3-11
• “Using Modal Algorithms” on page 3-15
• “Reducing Large-Scale Models” on page 3-20
• “Normalized Coprime Factor Reduction” on page 3-21
• “Bibliography” on page 3-23
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Why Reduce Model Order?
In the design of robust controllers for complicated systems, model reduction fits several
goals:

1 To simplify the best available model in light of the purpose for which the model is to
be used—namely, to design a control system to meet certain specifications.

2 To speed up the simulation process in the design validation stage, using a smaller
size model with most of the important system dynamics preserved.

3 Finally, if a modern control method such as LQG or H∞ is used for which the
complexity of the control law is not explicitly constrained, the order of the resultant
controller is likely to be considerably greater than is truly needed. A good model
reduction algorithm applied to the control law can sometimes significantly reduce
control law complexity with little change in control system performance.

Model reduction routines in this toolbox can be put into two categories:

• Additive error method — The reduced-order model has an additive error bounded
by an error criterion.

• Multiplicative error method — The reduced-order model has a multiplicative or
relative error bounded by an error criterion.

The error is measured in terms of peak gain across frequency (H∞ norm), and the error
bounds are a function of the neglected Hankel singular values.

See Also

Related Examples
• “Hankel Singular Values” on page 3-3
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Hankel Singular Values
In control theory, eigenvalues define a system stability, whereas Hankel singular values
define the “energy” of each state in the system. Keeping larger energy states of a system
preserves most of its characteristics in terms of stability, frequency, and time responses.
Model reduction techniques presented here are all based on the Hankel singular values
of a system. They can achieve a reduced-order model that preserves the majority of the
system characteristics.

Mathematically, given a stable state-space system (A,B,C,D), its Hankel singular values
are defined as [1] on page 1-24
s lH i PQ= ( )

where P and Q are controllability and observability grammians satisfying
AP PA BB

A Q QA C C

T T

T T

+ = -

+ = - .

For example, generate a random 30-state system and plot its Hankel singular values.

rng(1234,'twister');
G = rss(30,4,3);
hankelsv(G)
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The plot shows shows that system G has most of its “energy” stored in states 1 through
15 or so. Later, you will see how to use model reduction routines to keep a 15-state
reduced model that preserves most of its dynamic response.

See Also

Related Examples
• “Approximate Plant Model by Additive Error Methods” on page 3-8
• “Approximate Plant Model by Multiplicative Error Method” on page 3-11
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More About
• “Model Reduction Techniques” on page 3-6

 See Also
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Model Reduction Techniques
Robust Control Toolbox software offers several algorithms for model approximation and
order reduction. These algorithms let you control the absolute or relative approximation
error, and are all based on the Hankel singular values of the system.

Robust control theory quantifies a system uncertainty as either additive or multiplicative
types. These model reduction routines are also categorized into two groups: additive error
and multiplicative error types. In other words, some model reduction routines produce a

reduced-order model Gred of the original model G with a bound on the error G Gred-
•

,
the peak gain across frequency. Others produce a reduced-order model with a bound on

the relative error G G Gred
-

•
-( )1 .

These theoretical bounds are based on the “tails” of the Hankel singular values of the
model, which are given as follows.

• Additive error bound:

G Gred i

k

n

- £
•

+

Â2

1

s

Here, σi are denoted the ith Hankel singular value of the original system G.
• Multiplicative (relative) error bound:
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Here, σi are denoted the ith Hankel singular value of the phase matrix of the model G
(see the bstmr reference page).

Commands for Model Reduction

Top-Level Model Reduction Command

Method Description
reduce Main interface to model approximation algorithms

3 Model Reduction for Robust Control
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Normalized Coprime Balanced Model Reduction Command

Method Description
ncfmr Normalized coprime balanced truncation
Additive Error Model Reduction Commands

Method Description
balancmr Square-root balanced model truncation
schurmr Schur balanced model truncation
hankelmr Hankel minimum degree approximation
Multiplicative Error Model Reduction Command

Method Description
bstmr Balanced stochastic truncation
Additional Model Reduction Tools

Method Description
modreal Modal realization and truncation
slowfast Slow and fast state decomposition
stabsep Stable and antistable state projection

See Also

Related Examples
• “Approximate Plant Model by Additive Error Methods” on page 3-8
• “Approximate Plant Model by Multiplicative Error Method” on page 3-11

 See Also
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Approximate Plant Model by Additive Error Methods
Given a system G in LTI form, the following commands reduce the system to any desired
order you specify. The judgment call is based on its Hankel singular values.

rng(1234,'twister');
G = rss(30,4,3); % random 30-state model
% balanced truncation to models with sizes 12:16
[G1,info1] = balancmr(G,12:16); 
% Schur balanced truncation by specifying `MaxError'
[G2,info2] = schurmr(G,'MaxError',[1,0.8,0.5,0.2]);
sigma(G,'b-',G1,'r--',G2,'g-.')
legend('G','G1','G2')
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The plot compares the original model G with the reduced models G1 and G2.

To determine whether the theoretical error bound is satisfied, calculate the peak
difference across frequencies between the gain of the original system and the reduced
system. Compare that to the error bound stored in the info structure.

norm(G-G1(:,:,1),'inf') 

ans = 1.2556

info1.ErrorBound(1)

ans = 6.2433

Or, plot the model error vs. error bound via the following commands:

[sv,w] = sigma(G-G1(:,:,1));
loglog(w,sv,w,info1.ErrorBound(1)*ones(size(w)))
xlabel('rad/sec');ylabel('SV');
title('Error Bound and Model Error')

 Approximate Plant Model by Additive Error Methods
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See Also
balancmr

Related Examples
• “Model Reduction Techniques” on page 3-6
• “Approximate Plant Model by Multiplicative Error Method” on page 3-11
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Approximate Plant Model by Multiplicative Error Method
In most cases, the multiplicative error model reduction method bstmr tends to bound the
relative error between the original and reduced-order models across the frequency range
of interest, hence producing a more accurate reduced-order model than the additive error
methods. This characteristic is obvious in system models with low damped poles.

The following commands illustrate the significance of a multiplicative error model
reduction method as compared to any additive error type. Clearly, the phase-matching
algorithm using bstmr provides a better fit in the Bode plot.

rng(123456); 
G = rss(30,1,1);   % random 30-state model

[gr,infor] = reduce(G,'Algorithm','balance','order',7);
[gs,infos] = reduce(G,'Algorithm','bst','order',7);

figure(1)
bode(G,'b-',gr,'r--')
title('Additive Error Method')
legend('Original','Reduced')

 Approximate Plant Model by Multiplicative Error Method
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figure(2)
bode(G,'b-',gs,'r--')
title('Relative Error Method')
legend('Original','Reduced')

3 Model Reduction for Robust Control
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Therefore, for some systems with low damped poles or zeros, the balanced stochastic
method (bstmr) produces a better reduced-order model fit in those frequency ranges to
make multiplicative error small. Whereas additive error methods such as balancmr,
schurmr, or hankelmr only care about minimizing the overall "absolute" peak error,
they can produce a reduced-order model missing those low damped poles/zeros frequency
regions.

See Also
balancmr | bstmr | hankelmr | schurmr

 See Also
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Related Examples
• “Model Reduction Techniques” on page 3-6
• “Approximate Plant Model by Additive Error Methods” on page 3-8
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Using Modal Algorithms
Rigid Body Dynamics

In many cases, a model's -axis poles are important to keep after model reduction, e.g.,
rigid body dynamics of a flexible structure plant or integrators of a controller. A unique
routine, modreal, serves the purpose nicely.

modreal puts a system into its modal form, with eigenvalues appearing on the diagonal
of its A-matrix. Real eigenvalues appear in 1-by-1 blocks, and complex eigenvalues
appear in 2-by-2 real blocks. All the blocks are ordered in ascending order, based on their
eigenvalue magnitudes, by default, or descending order, based on their real parts.
Therefore, specifying the number of -axis poles splits the model into two systems with
one containing only -axis dynamics, the other containing the remaining dynamics.

rng(5678,'twister');  
G = rss(30,1,1);         % random 30-state model
[Gjw,G2] = modreal(G,1); % only one rigid body dynamics
G2.D = Gjw.D;            % put DC gain of G into G2
Gjw.D = 0; 
subplot(2,1,1)
sigma(Gjw)
ylabel('Rigid Body')
subplot(2,1,2)
sigma(G2)
ylabel('Nonrigid Body')
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Further model reduction can be done on G2 without any numerical difficulty. After G2 is
further reduced to Gred, the final approximation of the model is simply Gjw+Gred.

This process of splitting -axis poles has been built in and automated in all the model
reduction routines balancmr, schurmr, hankelmr, bstmr, and hankelsv, so that users
need not worry about splitting the model.

Examine the Hankel singular value plot.

hankelsv(G)
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Calculate an eighth-order reduced model.

[gr,info] = reduce(G,8); 
figure
bode(G,'b-',gr,'r--')
legend('Original','Reduced')

 Using Modal Algorithms

3-17



The default algorithm balancmr of reduce has done a great job of approximating a 30-
state model with just eight states. Again, the rigid body dynamics are preserved for
further controller design.

See Also
balancmr | bstmr | hankelmr | hankelsv | modreal | schurmr

Related Examples
• “Model Reduction Techniques” on page 3-6
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• “Reducing Large-Scale Models” on page 3-20

 See Also
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Reducing Large-Scale Models
For some really large size problems (states > 200), modreal turns out to be the only way
to start the model reduction process. Because of the size and numerical properties
associated with those large size, and low damped dynamics, most Hankel based routines
can fail to produce a good reduced-order model.

modreal puts the large size dynamics into the modal form, then truncates the dynamic
model to an intermediate stage model with a comfortable size of 50 or so states. From
this point on, those more sophisticated Hankel singular value based routines can further
reduce this intermediate stage model, in a much more accurate fashion, to a smaller size
for final controller design.

For a typical 240-state flexible spacecraft model in the spacecraft industry, applying
modreal and bstmr (or any other additive routines) in sequence can reduce the original
240-state plant dynamics to a seven-state three-axis model including rigid body
dynamics. Any modern robust control design technique mentioned in this toolbox can
then be easily applied to this smaller size plant for a controller design.

See Also
modreal

Related Examples
• “Model Reduction Techniques” on page 3-6
• “Using Modal Algorithms” on page 3-15
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Normalized Coprime Factor Reduction
A special model reduction routine ncfmr produces a reduced-order model by truncating a
balanced coprime set of a given model. It can directly simplify a modern controller with
integrators to a smaller size by balanced truncation of the normalized coprime factors. It
does not need modreal for pre-/postprocessing as the other routines do. However, any
integrators in the model will not be preserved.

rng(89,'twister');
K= rss(30,4,3);
[Kred,info2] = ncfmr(K);

Again, without specifying the size of the reduced-order model, any model reduction
routine presented here will plot a Hankel singular value bar chart and prompt you for a
reduced model size. In this case, enter 15.

Then, plot the singular values of the original and reduced-order models.

sigma(K,Kred)
legend('Original (30-state)','Kred (15-state)')
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If integral control is important, previously mentioned methods (except ncfmr) can nicely
preserve the original integrator(s) in the model.

See Also
modreal | ncfmr | ncfmr

Related Examples
• “Model Reduction Techniques” on page 3-6
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Robustness Analysis

• “Create Models of Uncertain Systems” on page 4-2
• “Robust Controller Design” on page 4-9
• “MIMO Robustness Analysis” on page 4-13
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Create Models of Uncertain Systems
The two dominant forms of model uncertainty are as follows:

• Uncertainty in parameters of the underlying differential equation models
• Frequency-domain uncertainty, which often quantifies model uncertainty by

describing absolute or relative uncertainty in the process's frequency response

Using these two basic building blocks, along with conventional system creation
commands (such as ss and tf), you can easily create uncertain system models.

Creating Uncertain Parameters
An uncertain parameter has a name (used to identify it within an uncertain system with
many uncertain parameters) and a nominal value. Being uncertain, it also has
variability, described in one of the following ways:

• An additive deviation from the nominal
• A range about the nominal
• A percentage deviation from the nominal

Create a real parameter, with name '|bw|', nominal value 5, and a percentage
uncertainty of 10%.

bw = ureal('bw',5,'Percentage',10)

bw =

  Uncertain real parameter "bw" with nominal value 5 and variability [-10,10]%.

This command creates a ureal object that stores a number of parameters in its
properties. View the properties of bw.

get(bw)

    NominalValue: 5
            Mode: 'Percentage'
           Range: [4.5000 5.5000]
       PlusMinus: [-0.5000 0.5000]
      Percentage: [-10 10]
    AutoSimplify: 'basic'
            Name: 'bw'
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Note that the range of variation (Range property) and the additive deviation from
nominal (the PlusMinus property) are consistent with the Percentage property value.

You can create state-space and transfer function models with uncertain real coefficients
using ureal objects. The result is an uncertain state-space (uss) object. As an example,
use the uncertain real parameter bw to model a first-order system whose bandwidth is
between 4.5 and 5.5 rad/s.

H = tf(1,[1/bw 1])

H =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 1 states.
  The model uncertainty consists of the following blocks:
    bw: Uncertain real, nominal = 5, variability = [-10,10]%, 1 occurrences

Type "H.NominalValue" to see the nominal value, "get(H)" to see all properties, and "H.Uncertainty" to interact with the uncertain elements.

Note that the result H is an uncertain system, called a uss model. The nominal value of H
is a state-space (ss) model. Verify that the pole is at -5, as expected from the uncertain
parameter's nominal value of 5.

pole(H.NominalValue)

ans = -5

Next, use bodeplot and stepplot to examine the behavior of H. These commands plot
the responses of the nominal system and a number of random samples of the uncertain
system.

bodeplot(H,{1e-1 1e2});
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stepplot(H)
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While there are variations in the bandwidth and time constant of H, the high-frequency
rolls off at 20 dB/decade regardless of the value of bw. You can capture the more
complicated uncertain behavior that typically occurs at high frequencies using the
ultidyn uncertain element.

Quantifying Unmodeled Dynamics

An informal way to describe the difference between the model of a process and the actual
process behavior is in terms of bandwidth. It is common to hear “The model is good out to
8 radians/second.” The precise meaning is not clear, but it is reasonable to believe that
for frequencies lower than, say, 5 rad/s, the model is accurate, and for frequencies

 Create Models of Uncertain Systems
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beyond, say, 30 rad/s, the model is not necessarily representative of the process behavior.
In the frequency range between 5 and 30, the guaranteed accuracy of the model
degrades.

The uncertain linear, time-invariant dynamics object ultidyn can be used to model this
type of knowledge. An ultidyn object represents an unknown linear system whose only
known attribute is a uniform magnitude bound on its frequency response. When coupled
with a nominal model and a frequency-shaping filter, ultidyn objects can be used to
capture uncertainty associated with the model dynamics.

Suppose that the behavior of the system modeled by H significantly deviates from its
first-order behavior beyond 9 rad/s, for example, about 5% potential relative error at low
frequency, increasing to 1000% at high frequency where H rolls off. In order to model
frequency domain uncertainty as described above using ultidyn objects, follow these
steps:

1 Create the nominal system Gnom, using tf, ss, or zpk. Gnom itself might already
have parameter uncertainty. In this case Gnom is H, the first-order system with an
uncertain time constant.

2 Create a filter W, called the “weight,” whose magnitude represents the relative
uncertainty at each frequency. The utility makeweight is useful for creating first-
order weights with specific low- and high-frequency gains, and specified gain
crossover frequency.

3 Create an ultidyn object Delta with magnitude bound equal to 1.

The uncertain model G is formed by G = Gnom*(1+W*Delta).

If the magnitude of W represents an absolute (rather than relative) uncertainty, use the
formula G = Gnom + W*Delta instead.

The following commands carry out these steps:
bw = ureal('bw',5,'Percentage',10);
H = tf(1,[1/bw 1]);

Gnom = H;
W = makeweight(.05,9,10);
Delta = ultidyn('Delta',[1 1]);
G = Gnom*(1+W*Delta)

G =

4 Robustness Analysis
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  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    Delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    bw: Uncertain real, nominal = 5, variability = [-10,10]%, 1 occurrences

Type "G.NominalValue" to see the nominal value, "get(G)" to see all properties, and "G.Uncertainty" to interact with the uncertain elements.

Note that the result G is also an uncertain system, with dependence on both Delta and
bw. You can use bode to make a Bode plot of 20 random samples of G's behavior over the
frequency range [0.1 100] rad/s.

bode(G,{1e-1 1e2})

 Create Models of Uncertain Systems
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In the next section, you design and compare two feedback controllers for G.

See Also

Related Examples
• “System with Uncertain Parameters” on page 1-6
• “Systems with Unmodeled Dynamics”
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Robust Controller Design
In this tutorial, design a feedback controller for G, the uncertain model created in “Create
Models of Uncertain Systems” on page 4-2. The goals of this design are the usual ones:
good steady-state tracking and disturbance rejection properties. Because the plant model
is nominally a first-order lag, choose a PI control architecture. Given the desired closed-
loop damping ratio ξ and natural frequency ωn, the design equations for KI and KP (based
on the nominal open-loop time constant of 0.2) are

K K
I

n
P

n= = -
w xw2

5

2

5
1, .

Follow these steps to design the controller:

1 In order to study how the uncertain behavior of G affects the achievable closed-loop
bandwidth, design two controllers, both achieving ξ=0.707, with different ωn: 3 and
7.5 respectively.

xi = 0.707;
wn = 3;
K1 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);
wn = 7.5;
K2 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);

Note that the nominal closed-loop bandwidth achieved by K2 is in a region where G
has significant model uncertainty. It will not be surprising if the model variations
lead to significant degradations in the closed-loop performance.

2 Form the closed-loop systems using feedback.

T1 = feedback(G*K1,1);
T2 = feedback(G*K2,1);

3 Plot the step responses of 20 samples of each closed-loop system.

tfinal = 3;
stepplot(T1,'b',T2,'r',tfinal)

 Robust Controller Design
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The step responses for T2 exhibit a faster rise time because K2 sets a higher closed loop
bandwidth. However, the model variations have a greater effect.

You can use robstab to check the robustness of stability to the model variations.

The stabmarg variable gives lower and upper bounds on the stability margin. A stability
margin greater than 1 means the system is stable for all values of the modeled
uncertainty. A stability margin less than 1 means there are allowable values of the
uncertain elements that make the system unstable. The report variable briefly
summarizes the analysis.

While both systems are stable for all variations, their performance is clearly affected to
different degrees. To determine how the uncertainty affects closed-loop performance, you
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can use wcgain to compute the worst-case effect of the uncertainty on the peak
magnitude of the closed-loop sensitivity (S=1/(1+GK)) function. This peak gain is
typically correlated with the amount of overshoot in a step response.

To do this, form the closed-loop sensitivity functions and call wcgain.

The maxgain variable gives lower and upper bounds on the worst-case peak gain of the
sensitivity transfer function, as well as the specific frequency where the maximum gain
occurs. The wcu variable contains specific values of the uncertain elements that achieve
this worst-case behavior.

You can use usubs to substitute these worst-case values for uncertain elements, and
compare the nominal and worst-case behavior. Use bodemag and step to make the
comparison.

bodemag(S1.NominalValue,'b',usubs(S1,wcu1),'b');
hold on
bodemag(S2.NominalValue,'r',usubs(S2,wcu2),'r');
hold off

 Robust Controller Design
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Clearly, while K2 achieves better nominal sensitivity than K1, the nominal closed-loop
bandwidth extends too far into the frequency range where the process uncertainty is very
large. Hence the worst-case performance of K2 is inferior to K1 for this particular
uncertain model.

See Also

Related Examples
• “MIMO Robustness Analysis” on page 4-13
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MIMO Robustness Analysis
You can create and analyze uncertain state-space models made up of uncertain state-
space matrices. In this example, create a MIMO system with parametric uncertainty and
analyze it for robust stability and worst-case performance.

Consider a two-input, two-output, two-state system whose model has parametric
uncertainty in the state-space matrices. First create an uncertain parameter p. Using the
parameter, make uncertain A and C matrices. The B matrix happens to be not-uncertain,
although you will add frequency-domain input uncertainty to the model later.

p = ureal('p',10,'Percentage',10);
A = [0 p;-p 0];
B = eye(2);
C = [1 p;-p 1];
H = ss(A,B,C,[0 0;0 0])

H =

  Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    p: Uncertain real, nominal = 10, variability = [-10,10]%, 2 occurrences

Type "H.NominalValue" to see the nominal value, "get(H)" to see all properties, and "H.Uncertainty" to interact with the uncertain elements.

You can view the properties of the uncertain system H using the get command.

get(H)

     NominalValue: [2x2 ss]
      Uncertainty: [1x1 struct]
                A: [2x2 umat]
                B: [2x2 double]
                C: [2x2 umat]
                D: [2x2 double]
                E: []
        StateName: {2x1 cell}
        StateUnit: {2x1 cell}
    InternalDelay: [0x1 double]
       InputDelay: [2x1 double]
      OutputDelay: [2x1 double]
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               Ts: 0
         TimeUnit: 'seconds'
        InputName: {2x1 cell}
        InputUnit: {2x1 cell}
       InputGroup: [1x1 struct]
       OutputName: {2x1 cell}
       OutputUnit: {2x1 cell}
      OutputGroup: [1x1 struct]
            Notes: [0x1 string]
         UserData: []
             Name: ''
     SamplingGrid: [1x1 struct]

Most properties behave in the same way as the corresponding properties of ss objects.
The property NominalValue is itself an ss object.

Adding Independent Input Uncertainty to Each Channel

The model for H does not include actuator dynamics. Said differently, the actuator models
are unity-gain for all frequencies.

Nevertheless, the behavior of the actuator for channel 1 is modestly uncertain (say 10%)
at low frequencies, and the high-frequency behavior beyond 20 rad/s is not accurately
modeled. Similar statements hold for the actuator in channel 2, with larger modest
uncertainty at low frequency (say 20%) but accuracy out to 45 rad/s.

Use ultidyn objects Delta1 and Delta2 along with shaping filters W1 and W2 to add
this form of frequency domain uncertainty to the model.

W1 = makeweight(.1,20,50);
W2 = makeweight(.2,45,50);
Delta1 = ultidyn('Delta1',[1 1]);
Delta2 = ultidyn('Delta2',[1 1]);
G = H*blkdiag(1+W1*Delta1,1+W2*Delta2)

G =

  Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 4 states.
  The model uncertainty consists of the following blocks:
    Delta1: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    Delta2: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    p: Uncertain real, nominal = 10, variability = [-10,10]%, 2 occurrences
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Type "G.NominalValue" to see the nominal value, "get(G)" to see all properties, and "G.Uncertainty" to interact with the uncertain elements.

Note that G is a two-input, two-output uncertain system, with dependence on three
uncertain elements, Delta1, Delta2, and p. It has four states, two from H and one each
from the shaping filters W1 and W2, which are embedded in G.

You can plot a 2-second step response of several samples of G The 10% uncertainty in the
natural frequency is obvious.

stepplot(G,2)
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You can create a Bode plot of samples of G. The high-frequency uncertainty in the model
is also obvious. For clarity, start the Bode plot beyond the resonance.

bodeplot(G,{13 100})

Closed-Loop Robustness Analysis

Load the controller and verify that it is two-input and two-output.

load(fullfile(matlabroot,'examples','robust','mimoKexample.mat'))
size(K)

State-space model with 2 outputs, 2 inputs, and 9 states.
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You can use the command loopsens to form all the standard plant/controller feedback
configurations, including sensitivity and complementary sensitivity at both the input and
output. Because G is uncertain, all the closed-loop systems are uncertain as well.

F = loopsens(G,K)

F = 

  struct with fields:

        Si: [2x2 uss]
        Ti: [2x2 uss]
        Li: [2x2 uss]
        So: [2x2 uss]
        To: [2x2 uss]
        Lo: [2x2 uss]
       PSi: [2x2 uss]
       CSo: [2x2 uss]
     Poles: [13x1 double]
    Stable: 1

F is a structure with many fields. The poles of the nominal closed-loop system are in
F.Poles, and F.Stable is 1 if the nominal closed-loop system is stable. In the
remaining 10 fields, S stands for sensitivity, T or complementary sensitivity, and L for
open-loop gain. The suffixes i and o refer to the input and output of the plant. Finally, P
and C refer to the plant and controller.

Hence, Ti is mathematically the same as:

Lo is G*K, and CSo is mathematically the same as

Examine the transmission of disturbances at the plant input to the plant output by
plotting responses of F.PSi. Graph some samples along with the nominal.

bodemag(F.PSi.NominalValue,'r+',F.PSi,'b-',{1e-1 100})
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Nominal Stability Margins

You can use loopmargin to investigate loop-at-a-time gain and phase margins, loop-at-
a-time disk margins, and simultaneous multivariable margins. They are computed for
the nominal system and do not reflect the uncertainty models within G.

Explore the simultaneous margins individually at the plant input, individually at the
plant output, and simultaneously at both input and output.

[I,DI,SimI,O,DO,SimO,Sim] = loopmargin(G,K);

The third output argument is the simultaneous gain and phase variations allowed in all
input channels to the plant.
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SimI

SimI = 

  struct with fields:

     GainMargin: [0.1187 8.4215]
    PhaseMargin: [-76.4565 76.4565]
      Frequency: 18.5851

This information implies that the gain at the plant input can vary in both channels
independently by factors between (approximately) 1/8 and 8, as well as phase variations
up to 76 degrees.

The sixth output argument is the simultaneous gain and phase variations allowed in all
output channels to the plant.

SimO

SimO = 

  struct with fields:

     GainMargin: [0.1202 8.3180]
    PhaseMargin: [-76.2894 76.2894]
      Frequency: 17.8424

Note that the simultaneous margins at the plant output are similar to those at the input.
This is not always the case in multiloop feedback systems.

The last output argument is the simultaneous gain and phase variations allowed in all
input and output channels to the plant. As expected, when you consider all such
variations simultaneously, the margins are somewhat smaller than those at the input or
output alone.

Sim

Sim = 

  struct with fields:
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     GainMargin: [0.5677 1.7616]
    PhaseMargin: [-30.8362 30.8362]
      Frequency: 9.1399

Nevertheless, these numbers indicate a generally robust closed-loop system, able to
tolerate significant gain (more than +/-50% in each channel) and 30 degree phase
variations simultaneously in all input and output channels of the plant.

Robust Stability Margin

With loopmargin, you determined various stability margins of the nominal multiloop
system. These margins are computed only for the nominal system and do not reflect the
uncertainty explicitly modeled by the ureal and ultidyn objects. When you work with a
detailed uncertainty model, the conventional stability margins computed by loopmargin
may not accurately reflect how close the system is from being unstable. You can then use
robstab to compute the robust stability margin for the specified uncertainty.

In this example, use robstab to compute the robust stability margin for the uncertain
feedback loop comprised of G and K. You can use any of the closed-loop transfer functions
in F = loopsens(G,K). All of them, F.Si, F.To, etc., have the same internal
dynamics, and hence their stability properties are the same.
opt = robOptions('Display','on');
stabmarg = robstab(F.So,opt)
Computing peak...  Percent completed: 100/100
System is robustly stable for the modeled uncertainty.
 -- It can tolerate up to 221% of the modeled uncertainty.
 -- There is a destabilizing perturbation amounting to 222% of the modeled uncertainty.
 -- This perturbation causes an instability at the frequency 13.7 rad/seconds.

stabmarg = 

  struct with fields:

           LowerBound: 2.2129
           UpperBound: 2.2173
    CriticalFrequency: 13.7287

This analysis confirms what the loopmargin analysis suggested. The closed-loop system
is quite robust, in terms of stability, to the variations modeled by the uncertain
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parameters Delta1, Delta2, and p. In fact, the system can tolerate more than twice the
modeled uncertainty without losing closed-loop stability.

Worst-Case Gain Analysis

You can plot the Bode magnitude of the nominal output sensitivity function. It clearly
shows decent disturbance rejection in all channels at low frequency.

bodemag(F.So.NominalValue,{1e-1 100})

You can compute the peak value of the maximum singular value of the frequency
response matrix using norm.

[PeakNom,freq] = getPeakGain(F.So.NominalValue)
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PeakNom =

    1.1288

freq =

    6.7969

The peak is about 1.13. What is the maximum output sensitivity gain that is achieved
when the uncertain elements Delta1, Delta2, and p vary over their ranges? You can
use wcgain to answer this.

[maxgain,wcu] = wcgain(F.So);
maxgain

maxgain = 

  struct with fields:

           LowerBound: 2.1599
           UpperBound: 2.1644
    CriticalFrequency: 8.3350

The analysis indicates that the worst-case gain is somewhere between 2.1 and 2.2. The
frequency where the peak is achieved is about 8.5.

Use usubs to replace the values for Delta1, Delta2, and p that achieve the gain of 2.1.
Make the substitution in the output complementary sensitivity, and do a step response.

step(F.To.NominalValue,usubs(F.To,wcu),5)
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The perturbed response, which is the worst combination of uncertain values in terms of
output sensitivity amplification, does not show significant degradation of the command
response. The settling time is increased by about 50%, from 2 to 4, and the off-diagonal
coupling is increased by about a factor of about 2, but is still quite small.

You can also examine the worst-case frequency response alongside the nominal and
sampled systems using wcsigma.

wcsigma(F.To,{1e-1,100})
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See Also
loopmargin | loopsens | robstab | ultidyn | usubs | wcgain | wcsigma
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H-Infinity and Mu Synthesis

• “Interpretation of H-Infinity Norm” on page 5-2
• “H-Infinity Performance” on page 5-9
• “Robust Control of an Active Suspension” on page 5-17
• “Bibliography” on page 5-38
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Interpretation of H-Infinity Norm

Norms of Signals and Systems

There are several ways of defining norms of a scalar signal e(t) in the time domain. We
will often use the 2-norm, (L2-norm), for mathematical convenience, which is defined as

e e t dt
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If this integral is finite, then the signal e is square integrable, denoted as e ∊ L2. For
vector-valued signals
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In µ-tools the dynamic systems we deal with are exclusively linear, with state-space
model
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or, in the transfer function form,

e(s) = T(s)d(s), T(s):= C(sI – A)–1B + D

Two mathematically convenient measures of the transfer matrix T(s) in the frequency
domain are the matrix H2 and H∞ norms,
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where the Frobenius norm (see the MATLAB norm command) of a complex matrix M is
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Both of these transfer function norms have input/output time-domain interpretations. If,
starting from initial condition x(0) = 0, two signals d and e are related by
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then

• For d, a unit intensity, white noise process, the steady-state variance of e is ∥T∥2.
• The L2 (or RMS) gain from d → e,

max
d

e

dπ0

2

2

is equal to ∥T∥∞. This is discussed in greater detail in the next section.

Using Weighted Norms to Characterize Performance

Any performance criterion must also account for

• Relative magnitude of outside influences
• Frequency dependence of signals
• Relative importance of the magnitudes of regulated variables

So, if the performance objective is in the form of a matrix norm, it should actually be a
weighted norm

∥WLTWR∥
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where the weighting function matrices WL and WR are frequency dependent, to account
for bandwidth constraints and spectral content of exogenous signals. The most natural
(mathematical) manner to characterize acceptable performance is in terms of the MIMO
∥·∥∞ (H∞) norm. For this reason, this section now discusses some interpretations of the H∞
norm.

Unweighted MIMO System

Suppose T is a MIMO stable linear system, with transfer function matrix T(s). For a

given driving signal %d t( ) , define %e  as the output, as shown below.

Note that it is more traditional to write the diagram in “Unweighted MIMO System:
Vectors from Left to Right” on page 5-4 with the arrows going from left to right as in
“Weighted MIMO System” on page 5-6.

Unweighted MIMO System: Vectors from Left to Right

The two diagrams shown above represent the exact same system. We prefer to write
these block diagrams with the arrows going right to left to be consistent with matrix and
operator composition.

Assume that the dimensions of T are ne × nd. Let β > 0 be defined as
b s w

w

: : max .= = ( )ÈÎ ˘̊•
Œ

T T j

R

Now consider a response, starting from initial condition equal to 0. In that case,
Parseval's theorem gives that
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Moreover, there are specific disturbances d that result in the ratio % %e d
2 2

 arbitrarily
close to β. Because of this, ∥T∥∞ is referred to as the L2 (or RMS) gain of the system.

As you would expect, a sinusoidal, steady-state interpretation of ∥T∥∞ is also possible: For

any frequency w Œ R , any vector of amplitudes a Rn
d

Œ , and any vector of phases

f Œ R
n

d , with ∥a∥2 ≤ 1, define a time signal
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Applying this input to the system T results in a steady-state response %e
ss

 of the form
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The vector b R
n

eŒ  will satisfy ∥b∥2 ≤ β. Moreover, β, as defined in “Weighted MIMO
System” on page 5-6, is the smallest number such that this is true for every ∥a∥2 ≤ 1,
w , and ϕ.

Note that in this interpretation, the vectors of the sinusoidal magnitude responses are
unweighted, and measured in Euclidean norm. If realistic multivariable performance
objectives are to be represented by a single MIMO ∥·∥∞ objective on a closed-loop transfer
function, additional scalings are necessary. Because many different objectives are being
lumped into one matrix and the associated cost is the norm of the matrix, it is important
to use frequency-dependent weighting functions, so that different requirements can be
meaningfully combined into a single cost function. Diagonal weights are most easily
interpreted.

Consider the diagram of “Weighted MIMO System” on page 5-6, along with
“Unweighted MIMO System: Vectors from Left to Right” on page 5-4.

Assume that WL and WR are diagonal, stable transfer function matrices, with diagonal
entries denoted Li and Ri.
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Weighted MIMO System

Bounds on the quantity ∥WLTWR∥∞ will imply bounds about the sinusoidal steady-state

behavior of the signals %d and % %e Td=( )  in the diagram of “Unweighted MIMO System:

Vectors from Left to Right” on page 5-4. Specifically, for sinusoidal signal %d , the steady-

state relationship between % %e Td=( ) , %d  and ∥WLTWR∥∞ is as follows. The steady-state

solution %e
ss

, denoted as
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for all sinusoidal input signals %d  of the form
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if and only if ∥WLTWR∥∞ ≤ 1.

This approximately (very approximately — the next statement is not actually correct)
implies that ∥WLTWR∥∞ ≤ 1 if and only if for every fixed frequency w , and all sinusoidal

disturbances %d  of the form “Equation 5-2” on page 5-7 satisfying
%d W ji Ri

£ ( )w

the steady-state error components will satisfy

%e
W j

i

Li

£
( )

1

w
.

This shows how one could pick performance weights to reflect the desired frequency-
dependent performance objective. Use WR to represent the relative magnitude of
sinusoids disturbances that might be present, and use 1/WL to represent the desired
upper bound on the subsequent errors that are produced.

Remember, however, that the weighted H∞ norm does not actually give element-by-
element bounds on the components of %e  based on element-by-element bounds on the

components of %d . The precise bound it gives is in terms of Euclidean norms of the

components of %e  and %d  (weighted appropriately by WL(j w ) and WR(j w )).

See Also
hinfstruct | hinfsyn
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Related Examples
• “H-Infinity Performance” on page 5-9
• “Robust Control of an Active Suspension” on page 5-17
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H-Infinity Performance

Performance as Generalized Disturbance Rejection

The modern approach to characterizing closed-loop performance objectives is to measure
the size of certain closed-loop transfer function matrices using various matrix norms.
Matrix norms provide a measure of how large output signals can get for certain classes of
input signals. Optimizing these types of performance objectives over the set of stabilizing
controllers is the main thrust of recent optimal control theory, such as L1, H2, H∞, and
optimal control. Hence, it is important to understand how many types of control
objectives can be posed as a minimization of closed-loop transfer functions.

Consider a tracking problem, with disturbance rejection, measurement noise, and control
input signal limitations, as shown in “Generalized and Weighted Performance Block
Diagram” on page 5-11. K is some controller to be designed and G is the system you
want to control.

Typical Closed-Loop Performance Objective

A reasonable, though not precise, design objective would be to design K to keep tracking
errors and control input signal small for all reasonable reference commands, sensor
noises, and external force disturbances.

Hence, a natural performance objective is the closed-loop gain from exogenous influences
(reference commands, sensor noise, and external force disturbances) to regulated
variables (tracking errors and control input signal). Specifically, let T denote the closed-
loop mapping from the outside influences to the regulated variables:

 H-Infinity Performance
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You can assess performance by measuring the gain from outside influences to regulated
variables. In other words, good performance is associated with T being small. Because
the closed-loop system is a multiinput, multioutput (MIMO) dynamic system, there are
two different aspects to the gain of T:

• Spatial (vector disturbances and vector errors)
• Temporal (dynamic relationship between input/output signals)

Hence the performance criterion must account for

• Relative magnitude of outside influences
• Frequency dependence of signals
• Relative importance of the magnitudes of regulated variables

So if the performance objective is in the form of a matrix norm, it should actually be a
weighted norm

∥WLTWR∥

where the weighting function matrices WL and WR are frequency dependent, to account
for bandwidth constraints and spectral content of exogenous signals. A natural
(mathematical) manner to characterize acceptable performance is in terms of the MIMO
∥· ∥∞ (H∞) norm. See “Interpretation of H-Infinity Norm” on page 5-2 for an interpretation
of the H∞ norm and signals.

Interconnection with Typical MIMO Performance Objectives

The closed-loop performance objectives are formulated as weighted closed-loop transfer
functions that are to be made small through feedback. A generic example, which includes
many relevant terms, is shown in block diagram form in “Generalized and Weighted
Performance Block Diagram” on page 5-11. In the diagram, G denotes the plant model
and K is the feedback controller.
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Wcmd

K

Wmodel

Wact

Wsnois

Hsens

G

Wdist Wperf1
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-

d1 d1

~

d2

d2

~

d3d3

~

e1

e1
~

e2
e2
~

e3

e3
~

Generalized and Weighted Performance Block Diagram

The blocks in this figure might be scalar (SISO) and/or multivariable (MIMO), depending
on the specific example. The mathematical objective of H∞ control is to make the closed-
loop MIMO transfer function Ted satisfy ∥Ted∥∞ < 1. The weighting functions are used to
scale the input/output transfer functions such that when ∥Ted∥∞ < 1, the relationship

between %d  and %e  is suitable.

Performance requirements on the closed-loop system are transformed into the H∞
framework with the help of weighting or scaling functions. Weights are selected to
account for the relative magnitude of signals, their frequency dependence, and their
relative importance. This is captured in the figure above, where the weights or scalings
[Wcmd, Wdist,Wsnois] are used to transform and scale the normalized input signals [d1,d2,d3]
into physical units defined as [d1, d2, d3]. Similarly weights or scalings [Wact, Wperf1,Wperf2]
transform and scale physical units into normalized output signals [e1, e2, e3]. An
interpretation of the signals, weighting functions, and models follows.
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Signal Meaning
d1

%d
1

Normalized reference command

Typical reference command in physical units

d2

%d
2

Normalized exogenous disturbances

Typical exogenous disturbances in physical units

d3

%d
3

Normalized sensor noise

Typical sensor noise in physical units

e1

%e
1

Weighted control signals

Actual control signals in physical units

e2

%e
2

Weighted tracking errors

Actual tracking errors in physical units

e3

%e
3

Weighted plant errors

Actual plant errors in physical units

Wcmd

Wcmd is included in H∞ control problems that require tracking of a reference command.
Wcmd shapes the normalized reference command signals (magnitude and frequency) into
the actual (or typical) reference signals that you expect to occur. It describes the
magnitude and the frequency dependence of the reference commands generated by the
normalized reference signal. Normally Wcmd is flat at low frequency and rolls off at high
frequency. For example, in a flight control problem, fighter pilots generate stick input
reference commands up to a bandwidth of about 2 Hz. Suppose that the stick has a
maximum travel of three inches. Pilot commands could be modeled as normalized signals
passed through a first-order filter:

W

s

cmd
=

◊

+

3

1

2 2
1

p

.

5 H-Infinity and Mu Synthesis

5-12



Wmodel

Wmodel represents a desired ideal model for the closed-looped system and is often included
in problem formulations with tracking requirements. Inclusion of an ideal model for
tracking is often called a model matching problem, i.e., the objective of the closed-loop
system is to match the defined model. For good command tracking response, you might
want the closed-loop system to respond like a well-damped second-order system. The
ideal model would then be

W

s
model

=
+ +

w

zw w

2

2 2
2

for specific desired natural frequency ω and desired damping ratio ζ. Unit conversions
might be necessary to ensure exact correlation between the ideal model and the closed-
loop system. In the fighter pilot example, suppose that roll-rate is being commanded and
10º/second response is desired for each inch of stick motion. Then, in these units, the
appropriate model is:

W

s
model

=
+ +

10

2

2

2 2

w

zw w
.

Wdist

Wdist shapes the frequency content and magnitude of the exogenous disturbances
affecting the plant. For example, consider an electron microscope as the plant. The
dominant performance objective is to mechanically isolate the microscope from outside
mechanical disturbances, such as ground excitations, sound (pressure) waves, and air
currents. You can capture the spectrum and relative magnitudes of these disturbances
with the transfer function weighting matrix Wdist.

Wperf1

Wperf1 weights the difference between the response of the closed-loop system and the ideal
model W model. Often you might want accurate matching of the ideal model at low
frequency and require less accurate matching at higher frequency, in which case Wperf1 is
flat at low frequency, rolls off at first or second order, and flattens out at a small, nonzero
value at high frequency. The inverse of the weight is related to the allowable size of
tracking errors, when dealing with the reference commands and disturbances described
by Wcmd and Wdist.

Wperf2
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Wperf2 penalizes variables internal to the process G, such as actuator states that are
internal to G or other variables that are not part of the tracking objective.

Wact

Wact is used to shape the penalty on control signal use. Wact is a frequency varying
weighting function used to penalize limits on the deflection/position, deflection rate/
velocity, etc., response of the control signals, when dealing with the tracking and
disturbance rejection objectives defined above. Each control signal is usually penalized
independently.

Wsnois

Wsnois represents frequency domain models of sensor noise. Each sensor measurement
feedback to the controller has some noise, which is often higher in one frequency range
than another. The Wsnois weight tries to capture this information, derived from laboratory
experiments or based on manufacturer measurements, in the control problem. For
example, medium grade accelerometers have substantial noise at low frequency and high
frequency. Therefore the corresponding Wsnois weight would be larger at low and high
frequency and have a smaller magnitude in the mid-frequency range. Displacement or
rotation measurement is often quite accurate at low frequency and in steady state, but
responds poorly as frequency increases. The weighting function for this sensor would be
small at low frequency, gradually increase in magnitude as a first- or second-order
system, and level out at high frequency.

Hsens

Hsens represents a model of the sensor dynamics or an external antialiasing filter. The
transfer functions used to describe Hsens are based on physical characteristics of the
individual components. These models might also be lumped into the plant model G.

This generic block diagram has tremendous flexibility and many control performance
objectives can be formulated in the H∞ framework using this block diagram description.

Robustness in the H-Infinity Framework

Performance and robustness tradeoffs in control design were discussed in the context of
multivariable loop shaping in “Tradeoff Between Performance and Robustness” on page
2-2. In the H∞ control design framework, you can include robustness objectives as
additional disturbance to error transfer functions — disturbances to be kept small.
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Consider the following figure of a closed-loop feedback system with additive and
multiplicative uncertainty models.

The transfer function matrices are defined as:

TF s T s KG I GK

TF s KS s K I GK

z w I

z w O

( ) = ( ) = +( )

( ) = ( ) = +( )

Æ

-

Æ

-

1 1

2 2

1

1

where TI(s) denotes the input complementary sensitivity function and SO(s) denotes the
output sensitivity function. Bounds on the size of the transfer function matrices from z1
to w1 and z2 to w2 ensure that the closed-loop system is robust to multiplicative
uncertainty, ΔM(s), at the plant input, and additive uncertainty, ΔA(s), around the plant
G(s). In the H∞ control problem formulation, the robustness objectives enter the synthesis
procedure as additional input/output signals to be kept small. The interconnection with
the uncertainty blocks removed follows.

The H∞ control robustness objective is now in the same format as the performance
objectives, that is, to minimize the H∞ norm of the transfer matrix from z, [z1,z2], to w,
[w1,w2].

Weighting or scaling matrices are often introduced to shape the frequency and
magnitude content of the sensitivity and complementary sensitivity transfer function
matrices. Let WM correspond to the multiplicative uncertainty and WA correspond to the
additive uncertainty model. ΔM(s) and ΔA(s) are assumed to be a norm bounded by 1, i.e.,
|ΔM(s)|<1 and |ΔA(s)|<1. Hence as a function of frequency, |WM(jω)| and |WA(jω)| are
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the respective sizes of the largest anticipated additive and multiplicative plant
perturbations.

The multiplicative weighting or scaling WM represents a percentage error in the model
and is often small in magnitude at low frequency, between 0.05 and 0.20 (5% to 20%
modeling error), and growing larger in magnitude at high frequency, 2 to 5 ((200% to
500% modeling error). The weight will transition by crossing a magnitude value of 1,
which corresponds to 100% uncertainty in the model, at a frequency at least twice the
bandwidth of the closed-loop system. A typical multiplicative weight is

W

s

s

M
=

+

+

0 10

1

5
1

1

200
1

. .

By contrast, the additive weight or scaling WA represents an absolute error that is often
small at low frequency and large in magnitude at high frequency. The magnitude of this
weight depends directly on the magnitude of the plant model, G(s).

See Also
hinfstruct | hinfsyn

Related Examples
• “Norms and Singular Values” on page 2-4
• “Robust Control of an Active Suspension” on page 5-17
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Robust Control of an Active Suspension
This example shows how to use Robust Control Toolbox™ to design a robust controller
for an active suspension system.

Quarter-Car Suspension Model

Conventional passive suspensions use a spring and damper between the car body and
wheel assembly. The spring-damper characteristics are selected to emphasize one of
several conflicting objectives such as passenger comfort, road handling, and suspension
deflection. Active suspensions allow the designer to balance these objectives using a
feedback-controller hydraulic actuator between the chassis and wheel assembly.

This example uses a quarter-car model of the active suspension system (see Figure 1).
The mass  represents the car chassis (body) and the mass  represents the wheel
assembly. The spring  and damper  represent the passive spring and shock absorber
placed between the car body and the wheel assembly. The spring  models the
compressibility of the pneumatic tire. The variables , , and  are the body travel,
wheel travel, and road disturbance, respectively. The force  applied between the body
and wheel assembly is controlled by feedback and represents the active component of the
suspension system.
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Figure 1: Quarter-car model of active suspension.

With the notation , the linearized state-space equations
for the quarter-car model are:

Construct a state-space model qcar representing these equations.

% Physical parameters
mb = 300;    % kg
mw = 60;     % kg
bs = 1000;   % N/m/s
ks = 16000 ; % N/m
kt = 190000; % N/m

% State matrices
A = [ 0 1 0 0; [-ks -bs ks bs]/mb ; ...
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      0 0 0 1; [ks bs -ks-kt -bs]/mw];
B = [ 0 0; 0 10000/mb ; 0 0 ; [kt -10000]/mw];
C = [1 0 0 0; 1 0 -1 0; A(2,:)];
D = [0 0; 0 0; B(2,:)];

qcar = ss(A,B,C,D);
qcar.StateName = {'body travel (m)';'body vel (m/s)';...
          'wheel travel (m)';'wheel vel (m/s)'};
qcar.InputName = {'r';'fs'};
qcar.OutputName = {'xb';'sd';'ab'};

The transfer function from actuator to body travel and acceleration has an imaginary-
axis zero with natural frequency 56.27 rad/s. This is called the tire-hop frequency.

tzero(qcar({'xb','ab'},'fs'))

ans =

  -0.0000 +56.2731i
  -0.0000 -56.2731i

Similarly, the transfer function from actuator to suspension deflection has an imaginary-
axis zero with natural frequency 22.97 rad/s. This is called the rattlespace frequency.

zero(qcar('sd','fs'))

ans =

   0.0000 +22.9734i
   0.0000 -22.9734i

Road disturbances influence the motion of the car and suspension. Passenger comfort is
associated with small body acceleration. The allowable suspension travel is constrained
by limits on the actuator displacement. Plot the open-loop gain from road disturbance
and actuator force to body acceleration and suspension displacement.

bodemag(qcar({'ab','sd'},'r'),'b',qcar({'ab','sd'},'fs'),'r',{1 100});
legend('Road disturbance (r)','Actuator force (fs)','location','SouthWest')
title(['Gain from road dist (r) and actuator force (fs) '...
       'to body accel (ab) and suspension travel (sd)'])
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Because of the imaginary-axis zeros, feedback control cannot improve the response from
road disturbance  to body acceleration  at the tire-hop frequency, and from  to
suspension deflection  at the rattlespace frequency. Moreover, because of the
relationship  and the fact that the wheel position  roughly follows  at low
frequency (less than 5 rad/s), there is an inherent trade-off between passenger comfort
and suspension deflection: any reduction of body travel at low frequency will result in an
increase of suspension deflection.

Uncertain Actuator Model

The hydraulic actuator used for active suspension control is connected between the body
mass  and the wheel assembly mass . The nominal actuator dynamics are
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represented by the first-order transfer function  with a maximum
displacement of 0.05 m.

ActNom = tf(1,[1/60 1]);

This nominal model only approximates the physical actuator dynamics. We can use a
family of actuator models to account for modeling errors and variability in the actuator
and quarter-car models. This family consists of a nominal model with a frequency-
dependent amount of uncertainty. At low frequency, below 3 rad/s, the model can vary up
to 40% from its nominal value. Around 3 rad/s, the percentage variation starts to
increase. The uncertainty crosses 100% at 15 rad/s and reaches 2000% at approximately
1000 rad/s. The weighting function  is used to modulate the amount of uncertainty
with frequency.

Wunc = makeweight(0.40,15,3);
unc = ultidyn('unc',[1 1],'SampleStateDim',5);
Act = ActNom*(1 + Wunc*unc);
Act.InputName = 'u';
Act.OutputName = 'fs';

The result Act is an uncertain state-space model of the actuator. Plot the Bode response
of 20 sample values of Act and compare with the nominal value.

rng('default')
bode(Act,'b',Act.NominalValue,'r+',logspace(-1,3,120))
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Design Setup

The main control objectives are formulated in terms of passenger comfort and road
handling, which relate to body acceleration  and suspension travel . Other factors
that influence the control design include the characteristics of the road disturbance, the
quality of the sensor measurements for feedback, and the limits on the available control
force. To use  synthesis algorithms, we must express these objectives as a single cost
function to be minimized. This can be done as indicated Figure 2.
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Figure 2: Disturbance rejection formulation.

The feedback controller uses measurements  of the suspension travel  and body
acceleration  to compute the control signal  driving the hydraulic actuator. There are
three external sources of disturbance:

• The road disturbance , modeled as a normalized signal  shaped by a weighting
function . To model broadband road deflections of magnitude seven centimeters,
we use the constant weight 

• Sensor noise on both measurements, modeled as normalized signals  and  shaped
by weighting functions  and . We use  and  to model
broadband sensor noise of intensity 0.01 and 0.5, respectively. In a more realistic
design, these weights would be frequency dependent to model the noise spectrum of
the displacement and acceleration sensors.

The control objectives can be reinterpreted as a disturbance rejection goal: Minimize the
impact of the disturbances  on a weighted combination of control effort ,
suspension travel , and body acceleration . When using the  norm (peak gain) to
measure "impact", this amounts to designing a controller that minimizes the  norm
from disturbance inputs  to error signals .
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Create the weighting functions of Figure 2 and label their I/O channels to facilitate
interconnection. Use a high-pass filter for  to penalize high-frequency content of the
control signal and thus limit the control bandwidth.

Wroad = ss(0.07);  Wroad.u = 'd1';   Wroad.y = 'r';
Wact = 8*tf([1 50],[1 500]);  Wact.u = 'u';  Wact.y = 'e1';
Wd2 = ss(0.01);  Wd2.u = 'd2';   Wd2.y = 'Wd2';
Wd3 = ss(0.5);   Wd3.u = 'd3';   Wd3.y = 'Wd3';

Specify closed-loop targets for the gain from road disturbance  to suspension deflection
 (handling) and body acceleration  (comfort). Because of the actuator uncertainty and

imaginary-axis zeros, only seek to attenuate disturbances below 10 rad/s.

HandlingTarget = 0.04 * tf([1/8 1],[1/80 1]);
ComfortTarget = 0.4 * tf([1/0.45 1],[1/150 1]);

Targets = [HandlingTarget ; ComfortTarget];
bodemag(qcar({'sd','ab'},'r')*Wroad,'b',Targets,'r--',{1,1000}), grid
title('Response to road disturbance')
legend('Open-loop','Closed-loop target')
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The corresponding performance weights  are the reciprocals of these comfort
and handling targets. To investigate the trade-off between passenger comfort and road
handling, construct three sets of weights  corresponding to three
different trade-offs: comfort ( ), balanced ( ), and handling ( ).

% Three design points
beta = reshape([0.01 0.5 0.99],[1 1 3]);
Wsd = beta / HandlingTarget;
Wsd.u = 'sd';  Wsd.y = 'e3';
Wab = (1-beta) / ComfortTarget;
Wab.u = 'ab';  Wab.y = 'e2';
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Finally, use connect to construct a model qcaric of the block diagram of Figure 2. Note
that qcaric is an array of three models, one for each design point . Also, qcaric is an
uncertain model since it contains the uncertain actuator model Act.
sdmeas  = sumblk('y1 = sd+Wd2');
abmeas = sumblk('y2 = ab+Wd3');
ICinputs = {'d1';'d2';'d3';'u'};
ICoutputs = {'e1';'e2';'e3';'y1';'y2'};
qcaric = connect(qcar(2:3,:),Act,Wroad,Wact,Wab,Wsd,Wd2,Wd3,...
                 sdmeas,abmeas,ICinputs,ICoutputs)

qcaric =

  3x1 array of uncertain continuous-time state-space models.
  Each model has 5 outputs, 4 inputs, 9 states, and the following uncertain blocks:
    unc: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences

Type "qcaric.NominalValue" to see the nominal value, "get(qcaric)" to see all properties, and "qcaric.Uncertainty" to interact with the uncertain elements.

Nominal H-infinity Design

Use hinfsyn to compute an  controller for each value of the blending factor .
ncont = 1; % one control signal, u
nmeas = 2; % two measurement signals, sd and ab
K = ss(zeros(ncont,nmeas,3));
gamma = zeros(3,1);
for i=1:3
   [K(:,:,i),~,gamma(i)] = hinfsyn(qcaric(:,:,i),nmeas,ncont);
end

gamma

gamma =

    0.9410
    0.6724
    0.8877

The three controllers achieve closed-loop  norms of 0.94, 0.67 and 0.89, respectively.
Construct the corresponding closed-loop models and compare the gains from road
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disturbance to  for the passive and active suspensions. Observe that all three
controllers reduce suspension deflection and body acceleration below the rattlespace
frequency (23 rad/s).

% Closed-loop models
K.u = {'sd','ab'};  K.y = 'u';
CL = connect(qcar,Act.Nominal,K,'r',{'xb';'sd';'ab'});

bodemag(qcar(:,'r'),'b', CL(:,:,1),'r-.', ...
   CL(:,:,2),'m-.', CL(:,:,3),'k-.',{1,140}), grid
legend('Open-loop','Comfort','Balanced','Handling','location','SouthEast')
title('Body travel, suspension deflection, and body acceleration due to road')
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Time-Domain Evaluation

To further evaluate the three designs, perform time-domain simulations using a road
disturbance signal  representing a road bump of height 5 cm.

% Road disturbance
t = 0:0.0025:1;
roaddist = zeros(size(t));
roaddist(1:101) = 0.025*(1-cos(8*pi*t(1:101)));

% Closed-loop model
SIMK = connect(qcar,Act.Nominal,K,'r',{'xb';'sd';'ab';'fs'});

% Simulate
p1 = lsim(qcar(:,1),roaddist,t);
y1 = lsim(SIMK(1:4,1,1),roaddist,t);
y2 = lsim(SIMK(1:4,1,2),roaddist,t);
y3 = lsim(SIMK(1:4,1,3),roaddist,t);

% Plot results
subplot(211)
plot(t,p1(:,1),'b',t,y1(:,1),'r.',t,y2(:,1),'m.',t,y3(:,1),'k.',t,roaddist,'g')
title('Body travel'), ylabel('x_b (m)')
subplot(212)
plot(t,p1(:,3),'b',t,y1(:,3),'r.',t,y2(:,3),'m.',t,y3(:,3),'k.',t,roaddist,'g')
title('Body acceleration'), ylabel('a_b (m/s^2)')
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subplot(211)
plot(t,p1(:,2),'b',t,y1(:,2),'r.',t,y2(:,2),'m.',t,y3(:,2),'k.',t,roaddist,'g')
title('Suspension deflection'), xlabel('Time (s)'), ylabel('s_d (m)')
subplot(212)
plot(t,zeros(size(t)),'b',t,y1(:,4),'r.',t,y2(:,4),'m.',t,y3(:,4),'k.',t,roaddist,'g')
title('Control force'), xlabel('Time (s)'), ylabel('f_s (N)')
legend('Open-loop','Comfort','Balanced','Suspension','Road Disturbance','location','SouthEast')
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Observe that the body acceleration is smallest for the controller emphasizing passenger
comfort and largest for the controller emphasizing suspension deflection. The "balanced"
design achieves a good compromise between body acceleration and suspension deflection.

Robust Mu Design

So far you have designed  controllers that meet the performance objectives for the
nominal actuator model. As discussed earlier, this model is only an approximation of the
true actuator and you need to make sure that the controller performance is maintained
in the face of model errors and uncertainty. This is called robust performance.

Next use -synthesis to design a controller that achieves robust performance for the
entire family of actuator models. The robust controller is synthesized with the dksyn
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function using the uncertain model qcaric(:,:,2) corresponding to "balanced"
performance ( ).

[Krob,~,gamma] = dksyn(qcaric(:,:,2),nmeas,ncont);

gamma

gamma =

    0.9082

Simulate the nominal response to a road bump with the robust controller Krob. The
responses are similar to those obtained with the "balanced"  controller.

% Closed-loop model (nominal)
Krob.u = {'sd','ab'};
Krob.y = 'u';
SIMKrob = connect(qcar,Act.Nominal,Krob,'r',{'xb';'sd';'ab';'fs'});

% Simulate
p1 = lsim(qcar(:,1),roaddist,t);
y1 = lsim(SIMKrob(1:4,1),roaddist,t);

% Plot results
clf, subplot(221)
plot(t,p1(:,1),'b',t,y1(:,1),'r',t,roaddist,'g')
title('Body travel'), ylabel('x_b (m)')
subplot(222)
plot(t,p1(:,3),'b',t,y1(:,3),'r')
title('Body acceleration'), ylabel('a_b (m/s^2)')
subplot(223)
plot(t,p1(:,2),'b',t,y1(:,2),'r')
title('Suspension deflection'), xlabel('Time (s)'), ylabel('s_d (m)')
subplot(224)
plot(t,zeros(size(t)),'b',t,y1(:,4),'r')
title('Control force'), xlabel('Time (s)'), ylabel('f_s (N)')
legend('Open-loop','Robust design','location','SouthEast')
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Next simulate the response to a road bump for 100 actuator models randomly selected
from the uncertain model set Act.

rng('default'), nsamp = 100;  clf

% Uncertain closed-loop model with balanced H-infinity controller
CLU = connect(qcar,Act,K(:,:,2),'r',{'xb','sd','ab'});
lsim(usample(CLU,nsamp),'b',CLU.Nominal,'r',roaddist,t)
title('Nominal "balanced" design')
legend('Perturbed','Nominal','location','SouthEast')
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% Uncertain closed-loop model with balanced robust controller
CLU = connect(qcar,Act,Krob,'r',{'xb','sd','ab'});
lsim(usample(CLU,nsamp),'b',CLU.Nominal,'r',roaddist,t)
title('Robust "balanced" design')
legend('Perturbed','Nominal','location','SouthEast')
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The robust controller Krob reduces variability due to model uncertainty and delivers
more consistent performance.

Controller Simplification

The robust controller Krob has eleven states. It is often the case that controllers
synthesized with dksyn have high order. You can use the model reduction functions to
find a lower-order controller that achieves the same level of robust performance. Use
reduce to generate approximations of various orders.

% Create array of reduced-order controllers
NS = order(Krob);
StateOrders = 1:NS;
Kred = reduce(Krob,StateOrders);
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Next use robgain to compute the robust performance margin for each reduced-order
approximation. The performance goals are met when the closed-loop gain is less than

. The robust performance margin measures how much uncertainty can be sustained
without degrading performance (exceeding ). A margin of 1 or more indicates that
we can sustain 100% of the specified uncertainty.

% Compute robust performance margin for each reduced controller
gamma = 1;
CLP = lft(qcaric(:,:,2),Kred);
for k=1:NS
   PM(k) = robgain(CLP(:,:,k),gamma);
end

% Compare robust performance of reduced- and full-order controllers
PMfull = PM(end).LowerBound;
plot(StateOrders,[PM.LowerBound],'b-o',...
   StateOrders,repmat(PMfull,[1 NS]),'r');
title('Robust performance margin as a function of controller order')
legend('Reduced order','Full order','location','SouthEast')
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The robust performance margin is well below 1 for controllers of order 7 and lower.
However there is no significant difference in performance margin between the 8th- and
11th-order controllers, so you can safely replace Krob by its 8th-order approximation.

Krob8 = Kred(:,:,8);

See Also
dksyn | hinfsyn
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Related Examples
• “H-Infinity Performance” on page 5-9

 See Also
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Robust Tuning Approaches
In this section...
“Robust Tuning and Multimodel Tuning” on page 6-2
“Choosing a Robust Tuning Approach” on page 6-2
“Tuning for Parameter Uncertainty” on page 6-3
“Tuning for Parameter Variations” on page 6-4
“Tune Against Multiple Plant Models” on page 6-8
“Selective Application of Tuning Goals” on page 6-10

Robust Tuning and Multimodel Tuning

The Robust Control Toolbox tuning tools, systune and Control System Tuner, allow you
to tune control systems for robustness against plant variation. You can tune controllers
to accommodate uncertainty in physical parameters.

You can also tune control systems to ensure performance across a range of operating
conditions. You can use multimodel tuning to ensure reliable control over multiple
system configurations, such as different failure modes of a system. When you tune for
multiple models, the software seeks values of controller parameters that best satisfy the
specified tuning objectives for all plant models.

Choosing a Robust Tuning Approach

Which approach to take to robust tuning depends on the system variations in your
application. The following table summarizes these approaches.
Robust Tuning Scenario Approach
Tune control system for robustness against
parameter uncertainty, such as a mass-
spring-damper system in which the spring
constant and damping coefficient are
uncertain.

Model the uncertain parameter values with
ureal blocks. See “Tuning for Parameter
Uncertainty” on page 6-3.

6 Robust Tuning
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Robust Tuning Scenario Approach
Tune control system for a few critical
values of the plant parameters.

Simultaneously tune multiple models
corresponding to the parameter values.
This approach is useful when you cannot
model the plant variations as ureal blocks.
See “Tuning for Parameter Variations” on
page 6-4.

• Ensure performance across different
operating conditions, such as the
response of aircraft flight controls at
different altitudes.

• Tune for reliable control over multiple
system configurations, such as different
failure modes of a system.

Simultaneously tune multiple models
obtained at different operating points or
representing different system
configurations. “Tune Against Multiple
Plant Models” on page 6-8.

Tuning for Parameter Uncertainty

The physical parameters of a system are often uncertain for various reasons, including
imprecise measurements, manufacturing tolerances, or wear and tear. You can use
Control System Tuner or the systune command to tune control systems for robustness
against real parameter uncertainty in the plant. You represent parameter uncertainty in
your control system model using uncertain real parameters ureal. The software
automatically finds the worst combinations of parameter values and tunes the controller
to maximize performance over the parameter uncertainty range.

Robust tuning against parameter uncertainty is also useful to avoid “over-tuning” the
control system. When you tune against a single plant, the software might optimize
performance at the expense of robustness. It is possible to obtain a design that
maximizes performance but is not very robust against variations in the plant. Specifying
some amount of plant variability lets the tuning software avoid such fragile designs and
achieve robust performance, often with only modest degradation of nominal performance.

Control System Modeled in Simulink

To set up a Simulink model of a control system for robust tuning, use linearization with
block substitution. (Requires Simulink Control Design™ software.) Use Gain blocks to
model the plant parameters and use block substitution to replace them with uncertain
values represented by ureal objects. Or, replace an entire subsystem with an uncertain
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state-space model (uss) of the subsystem. For more information, see “Model Uncertainty
in Simulink for Robust Tuning” on page 6-23.

As with control systems modeled in MATLAB, the software automatically tunes the
model for the worst combination of parameter values within the uncertainty range.

Control Systems Modeled in MATLAB

To represent real parameter uncertainty in the plant, build a generalized state-space
(genss) model of the control system using ureal blocks. Use control design blocks such
as tunablePID or tunableTF to represent tunable controller elements in the model.
(See “Build Tunable Control System Model With Uncertain Parameters” on page 6-17.)
Tune the model with systune or in Control System Tuner exactly as you would for a
tunable control system model without uncertainty.

• Command line: Use the genss model as the first input argument to systune. For a
detailed example, see “Robust Tuning of Positioning System” on page 6-51.

• Control System Tuner: Import the model into the app by selecting Edit
Architecture > Generalized feedback configuration and entering the name of
the genss model into the text box. Then, use the app exactly as you would for a
control system model without uncertainty.

In both cases, when you tune the model, the software automatically adjusts the tunable
components to optimize performance throughout the uncertainty range. Analysis plots
automatically display random samples of the uncertain system to give you a visual sense
of the performance variation.

Tuning for Parameter Variations
The block-substitution approach to modeling uncertainty, requires replacing an entire
block of your model with a ureal parameter or uss uncertain system. In some cases, you
might not be able to make such a substitution. As an alternative, you can vary system
parameters over a specified range, grid, or nonuniform set of values. When you use
systune or Control System Tuner to tune a system with parameter variation, you can
obtain a controller that robustly meets performance goals over a range of model-
coefficient values or over multiple plant configurations.

Specifying Parameter Variations in Control System Tuner

In Control System Tuner, specify block-parameter variations on the Control System
tab. In the Parameter Variations drop-down list, select Select parameters to
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vary. This action opens the Parameter Variations tab, in which you can specify the
block parameters to vary and the values they take. Control System Tuner linearizes your
Simulink model at each combination of block-parameter values that you provide. The app
then finds a set of controller gains that best meets your tuning goals for all the linearized
models simultaneously.

For a detailed example that shows how to use Control System Tuner to tune a control
system for multiple values of block parameters, see “Tuning for Multiple Values of Plant
Parameters” on page 6-85.

For more information about using the Parameter Variations tab to generate linear
models at multiple values of block parameters, see “Specify Parameter Samples for Batch
Linearization” (Simulink Control Design). The procedure for applying parameter
variation in Linear Analysis Tool is similar to the procedure in Control System Tuner.

Specifying Parameter Variations With slTuner

For command-line tuning of a control system modeled in Simulink, use the parameter-
variation feature of slTuner. To so, you construct a structure that contains the
parameter-value grid over which you want to tune the model. For an example illustrating
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parameter variation with slLinearizer, see “Vary Parameter Values and Obtain
Multiple Transfer Functions” (Simulink Control Design). The procedure for configuring
an slTuner interface for parameter variations is the same. After you configure the
slTuner interface, create tuning goals and tune the interface with systune. The
software tunes the system to meet your tuning goals for all parameter values
simultaneously.

Varying Block Parameters vs. Tuning Controller Parameters

The block parameters that you vary to generate multiple plant models are different from
the controller parameters that you tune to meet your tuning goals.

Block parameters are the values that specify attributes of the blocks in your Simulink
model. Block parameters can specify numeric values such as the gain of a gain block, a
spring constant, or other physical parameters of a system. Block parameters can also
specify structural attributes of a block, such as the dimensions of a lookup table.

You can vary any block parameter whose value is stored as a variable in the model
workspace or MATLAB workspace. However, do not vary the controller-block parameters
that you designate for tuning (see “Specify Blocks to Tune in Control System Tuner”
(Control System Toolbox)). Rather, vary parameters that specify attributes of the plant in
your control system. For example, in the model ActiveSuspensionQuarterCar, block
parameters specified as variables include a spring constant, Ks, and a damping constant,
Bs.
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The example “Tuning for Multiple Values of Plant Parameters” on page 6-85 shows how
to tune the control system of the ActiveSuspensionQuarterCar model for a range of
values of these parameters.

Controller parameters are the coefficients that the tuning software adjusts to yield
control system performance that meets your tuning goals. When you select blocks to
tune, the software assigns a parameterization to each block, as described in “View and
Change Block Parameterization in Control System Tuner” (Control System Toolbox). The
coefficients of these parameterizations are the controller parameters that the software
tunes. For example, if you select a PID Controller block to tune, the tuning software
assigns a parameterization whose tunable coefficients are the PID gains and filter
constant.

Thus, you specify controller parameters by selecting blocks to tune, and optionally
customizing the parameterization of those blocks. You specify other system parameters
to vary to obtain multiple plant models for tuning. In the example “Tuning for Multiple
Values of Plant Parameters” on page 6-85, the block selected for tuning is a State-Space
block. In that example, the controller parameters are the entries in the state-space
matrices.
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Tune Against Multiple Plant Models

When you tune controller gains against multiple models, the software seeks values of
controller parameters that best satisfy the specified tuning objectives for all plant
models. This is useful to ensure robust performance across a range of operating
conditions, or for multiple system configurations.

Tuning for Multiple Operating Points

Control System Tuner can tune controller parameters for a linearization of your
Simulink model obtained at any simulation snapshot time or steady-state operating
point. In the Control System tab, use the Operating Point menu to compute and
select operating points at which to linearize and tune.
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See “Specify Operating Points for Tuning in Control System Tuner” (Control System
Toolbox) for more information.

If you specify multiple operating points, Control System Tuner attempts to tune
controller parameters to satisfy your tuning goals at all the specified operating points.
You can restrict which tuning goals Control System Tuner enforces at each operating
point. See “Selective Application of Tuning Goals” on page 6-10.

At the command line, you can tune for multiple operating points by passing an array of
operating-point objects to slTuner.
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Tuning for Multiple System Configurations

You can tune a controller that is robust against multiple system configurations by
building an array of models representing those conditions. For example, you can create
an array of genss models that represent different failure modes of the system. In
Simulink, use slTuner to linearize your model under an array of operating conditions
that represent different failure modes. For an example, see the model in “Fault-Tolerant
Control of a Passenger Jet” on page 6-74. That model uses a gain block that, when set to
zero, breaks a feedback loop to simulate the loss of control of a system actuator. The
example then uses slTuner to sample the model with different channels of this gain
block set to zero. Tuning that slTuner with systune finds values of tunable controller
parameters that optimize the design goals over all failure modes.

Selective Application of Tuning Goals

Sometimes you want to restrict application of your tuning goals to a subset of the models
for which you are simultaneously tuning. For example, suppose that you linearize your
model at four snapshot times, t = [0,5,10,20]. You want to tune the model to meet
your design goals at all these times. However, suppose further that you have one tuning
goal that you do not want to enforce at t = 0 because it should only apply after the
model has reached steady state operation. To limit the application of this tuning goal:

• At the command line, set the Models property of the tuning goal to the array indices
of the models to which you want to apply the goal.

• In Control System Tuner, use the Apply goal to field of the tuning goal.
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Select Only models and enter the array indices of the models for which the goal is
enforced. In this example, linearizing at t = [0,5,10,20] yields an array of four
models, and you want to exclude the first model in that array (t = 0) from the tuning
goal. Therefore, enter array indices 2:4.

For multiple models obtained using the Parameter Variations tab, array indices are
assigned in the order that parameter combinations appear in the Parameter Variations
table. For example, if you apply the parameter variations of the following illustration,
array indices are assigned as shown.

Thus, for example, to apply a tuning goal only to those models with Bs = 1000,
regardless of the Ks value, enter [1,3] in the Only models field of the tuning goal.

Application to Nominal System

When performing robust tuning of a system with parameter uncertainty, you sometimes
want to apply certain tuning goals to the nominal system only. Or, you might want to
treat a tuning goal as a hard constraint for the nominal system, but as a soft constraint
over the rest of the uncertainty range. When tuning a control system modeled in
MATLAB, you can do this by putting the nominal system in an model array with the
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uncertain system. For example, suppose CL0 is a genss model having both uncertain
and tunable blocks. Create a model array of the nominal and full uncertain systems.

CL = [getNominal(CL0),CL0];

Suppose that you have created two tuning goals for this system, Req1 and Req2. You
want Req2 to apply to the nominal system only. To do so, use the Models property to
restrict Req2 to the first entry in the array.

Req2.Models = [1];

You can now use Req2 as with systune as either a hard goal or a soft goal.

To treat Req2 as a hard constraint for the nominal system and a soft constraint
otherwise, make a copy of the tuning goal. To restrict the copy to the second entry in the
array, set the Models property of the copy.

Req3 = Req2;
Req3.Models = [2];
hard = [Req1,Req2]; 
soft = Req3;
[CLt,fSoft,gHard] = systune(CL,soft,hard);

See Also
replaceBlock | slTuner | systune (for genss) | systune (for slTuner)

Related Examples
• “Model Uncertainty in Simulink for Robust Tuning” on page 6-23
• “Tuning for Multiple Values of Plant Parameters” on page 6-85
• “Robust Tuning of Positioning System” on page 6-51
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Interpreting Results of Robust Tuning
When you tune a control system with systune or Control System Tuner, the software
reports on the tuning progress and results as described in “Interpret Numeric Tuning
Results” (Control System Toolbox). When you tune a control system with parameter
uncertainty, the results contain additional information about the progress of the tuning
algorithm toward tuning for the worst-case parameter values.

In this section...
“Robust Tuning Algorithm” on page 6-14
“Displayed Results” on page 6-14
“Robust Tuning With Random Starts” on page 6-15
“Validation” on page 6-15

Robust Tuning Algorithm

The software begins the robust tuning process by tuning for the nominal plant model.
Then, the software performs the following steps iteratively:

1 Identify a parameter combination within the uncertainty ranges that violates the
design requirements (analysis step).

2 Adds a model evaluated at these parameter values to the set of models over which
the software is tuning.

3 Repeats tuning for the expanded model set (tuning step).

This process terminates when the analysis step is unable to find a parameter
combination that yields a significantly worse performance index than the value obtained
in the last iteration of the tuning step. The performance index is a weighted combination
of the soft constraint value fSoft and the hard constraint value gHard. (See “Interpret
Numeric Tuning Results” (Control System Toolbox) for more information.)

Displayed Results

The result is that on each iteration of this process, the algorithm returns a range of
values for each of fSoft and gHard. The minimum is the best achieved value for that
iteration, tuning the controller parameters over all the models in the expanded model
set. The maximum is the worst value the software can find in the uncertainty range,
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using that design (set of tuned controller-parameter values). This range is reflected in
the default display at the command line or in the Tuning Report in Control System
Tuner. For example, the following is a typical report for robust tuning of an uncertain
system using only soft constraints.

Soft: [0.906,18.3], Hard: [-Inf,-Inf], Iterations = 106
Soft: [1.02,3.77], Hard: [-Inf,-Inf], Iterations = 55
Soft: [1.25,1.85], Hard: [-Inf,-Inf], Iterations = 67
Soft: [1.26,1.26], Hard: [-Inf,-Inf], Iterations = 24
Final: Soft = 1.26, Hard = -Inf, Iterations = 252

Each of the first four lines corresponds to one iteration in the robust tuning process. In
the first iteration, the soft goals are satisfied for the nominal system (fSoft < 1). That
design is not robust against the entire uncertainty range, as shown by the worst-case
fSoft = 18.3. Adding that worst-case model to the expanded model set, the algorithm
finds a new design with fSoft = 1.02. Testing that design over the uncertainty range
yields a worst case of fSoft = 3.77. With each iteration, the gap between the
performance of the model set used for tuning and the worst-case performance narrows. In
the final iteration, the worst-case performance matches the multi-model performance.
The multi-model values typically increase as the algorithm tunes the controller against a
larger set of models, so that the robust fSoft and gHard values are typically larger than
the nominal values. systune returns the final values as output arguments.

Robust Tuning With Random Starts

When you use systuneOptions to set RandomStart > 0, the tuning software performs
nominal tuning from each of the random starting points. It then performs the robust
tuning process on each nominal design, starting with the best design. The
“robustification” of any particular design is aborted when the minimum value of fSoft
(the lower bound on robust performance) becomes much higher than the best robust
performance achieved so far.

The default display includes the fSoft and gHard values for all the nominal designs and
the results of each robust-tuning iteration. The software selects the best result of robust
tuning from among the randomly started designs.

Validation

The robust-tuning algorithm finds locally optimal designs that meet your design
requirements. However, identifying the worst-case parameter combinations for a given
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design is a difficult process. Although it rarely happens in practice, it is possible for the
algorithm to miss a worst-case parameter combination. Therefore, independent
confirmation of robustness, such as using μ-analysis, is recommended.

See Also

Related Examples
• “Robust Tuning of DC Motor Controller” on page 6-41
• “Robust Tuning of Mass-Spring-Damper System” on page 6-29

More About
• “Robust Tuning Approaches” on page 6-2
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Build Tunable Control System Model With Uncertain Parameters
This example shows how to construct a generalized state-space (genss) model of a
control system that has both tunable and uncertain parameters. You can use systune to
tune the tunable parameters of such a model to achieve performance that is robust
against the uncertainty in the system.

For this example, the plant is a mass-spring-damper system. The input is the applied
force, F, and the output is x, the position of the mass.

In this system, the mass m, the damping constant c, and the spring constant k all have
some uncertainty. Use uncertain ureal parameters to represent these quantities in
terms of their nominal or most probable value and a range of uncertainty around that
value.
um = ureal('m',3,'Percentage',40);
uc = ureal('c',1,'Percentage',20);
uk = ureal('k',2,'Percentage',30);

The transfer function of a mass-spring-damper system is a second-order function given
by:

Create this transfer function in MATLAB® using the uncertain parameters and the tf
command. The result is an uncertain state-space (uss) model.
G = tf(1,[um uc uk])

G =
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  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
    k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
    m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "G.NominalValue" to see the nominal value, "get(G)" to see all properties, and "G.Uncertainty" to interact with the uncertain elements.

Suppose you want to control this system with a PID controller, and that your design
requirements include monitoring the response to noise at the plant input. Build a model
of the following control system.

Use a tunable PID controller, and insert an analysis point to provide access to the
disturbance input.

C0 = tunablePID('C','PID');
d = AnalysisPoint('d');

Connect all the components to create the control system model.

T0 = feedback(G*d*C0,1)
T0.InputName = 'r';
T0.OutputName = 'x';

T0 =

  Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the following blocks:
    C: Parametric PID controller, 1 occurrences.
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    c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
    d: Analysis point, 1 channels, 1 occurrences.
    k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
    m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "ss(T0)" to see the current value, "get(T0)" to see all properties, and "T0.Blocks" to interact with the blocks.

T0 is a generalized state-space (genss) model that has both tunable and uncertain
blocks. In general, you can use feedback and other model interconnection commands,
such as connect, to build up models of more complex tunable and uncertain control
systems from fixed-value LTI components, uncertain components, and tunable
components.

When you plot system responses of a genss model that is both tunable and uncertain,
the plot displays multiple responses computed at random values of the uncertain
components. This sampling provides a general sense of the range of possible responses.
All plots use the current value of the tunable components.

bodeplot(T0)
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When you extract responses from a tunable and uncertain genss model, the responses
also contain both tunable and uncertain blocks. For example, examine the loop transfer
function at the disturbance input.

S0 = getLoopTransfer(T0,'d')
bodeplot(S0)

S0 =

  Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the following blocks:
    C: Parametric PID controller, 1 occurrences.
    c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
    d: Analysis point, 1 channels, 1 occurrences.
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    k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
    m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "ss(S0)" to see the current value, "get(S0)" to see all properties, and "S0.Blocks" to interact with the blocks.

You can now create tuning goals and use systune to tune the PID controller coefficients
of T0. When you do so, systune automatically tunes the coefficients to maximize
performance over the full range of uncertainty.

See Also
AnalysisPoint | connect | genss | ureal
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Related Examples
• “Robust Tuning of DC Motor Controller” on page 6-41
• “Model Uncertainty in Simulink for Robust Tuning” on page 6-23

More About
• “Robust Tuning Approaches” on page 6-2
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Model Uncertainty in Simulink for Robust Tuning
This example shows how to set up a Simulink model for robust tuning against parameter
uncertainty.

To perform such tuning, configure the Simulink model such that Control System Tuner
or slTuner takes the uncertainty into account. Doing so requires block substitution
(Simulink Control Design) for linearization, to replace the value of blocks that have
parameter uncertainty with uncertain parameters or systems.

In this example, you set up a model of a mass-spring-damper system for robust tuning,
where the physical parameters of the system are uncertain.

Mass-Spring-Damper System

Open the Simulink model rct_mass_spring_damper.

open_system('rct_mass_spring_damper')

This model represents a system for controlling the mass-spring damper system of the
following illustration.
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In this system, the applied force F is the plant input. The PID controller generates the
force necessary to control the mass position x. When the mass m, the damping constant c,
and the spring constant k are fixed and known, tuning the PID coefficients for desired
performance is straightforward. In practice, however, physical system parameters can be
uncertain. You can use Control System Tuner or systune to tune the system robustly
against the uncertainty, and achieve satisfactory performance within the range of
expected values for these parameters.

Specify Parameter Uncertainty

The model is configured to use the nominal or most probable values of the physical
parameters, m = 3, c = 1, and k = 2. To tune the system against uncertainty in these
parameters, specify the parameter uncertainty in the model.

First, create uncertain real (ureal) parameters for each of the three uncertainties. For
this example, specify the uncertainty as a percentage variation from the nominal value.

m_un = ureal('m',3,'Percentage',40);
c_un = ureal('c',1,'Percentage',20);
k_un = ureal('k',2,'Percentage',30);

To specify these uncertainties in the model, use block substitution. Block substitution
lets you specify the linearization of a particular block in a Simulink model. In the model,
right-click the Spring Stiffness block in the model and select Linear Analysis >
Specify Selected Block Linearization.
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In the Block Linearization Specification dialog box, check Specify block linearization
using one of the following and enter k_un in the text field. Click OK.

When you use Control System Tuner for this model, the software linearizes the model
and tunes the tunable parameters using that linearization to compute system responses.
Specifying k_un as the linearization of the Spring Stiffness block causes the
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software to use the uncertain parameter as the linearized value of the block instead of its
nominal value, which is a constant, fixed gain of 2.

Because the uncertain parameters in this model, such as the spring stiffness, are
implemented as scalar gain blocks, use a simple ureal parameter as the block
substitution. For more complex blocks, construct a uss model that represents the
uncertain value of the entire block.

Note Use block substitution to specify the uncertainty of the block even if the block is an
Uncertain LTI System block. Unless you explicitly specify the uncertain value as the
block substitution, Control System Tuner and slTuner use the nominal value when
linearizing Uncertain LTI System blocks.

In the same way, specify c_un as the block linearization for the Damping block. For the
Mass block, in the Block Linearization Specification dialog box, enter 1/m_un as the
uncertain value, because the gain of this block is the inverse of the mass.

Tune With Control System Tuner

You can now open Control System Tuner for the model, create tuning goals, and tune the
model. When you do so, Control System Tuner tunes the controller parameters to
optimize performance over the entire range of uncertainty. Tuning-goal plots and
response plots in Control System Tuner display multiple responses computed at random
values of the uncertain parameters, as shown.
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This sampling provides a general sense of the range of possible responses, but does not
necessarily reflect the true worst-case response.

Configuration for slTuner

When you use slTuner for command-line tuning, you can specify uncertainties in the
model using the Block Linearization Specification dialog box. Alternatively, you can
specify the uncertain block substitutions without altering the model. To do so, use a
block-substitution structure when you create the slTuner interface. For example, create
a block-substitution structure for the rct_mass_spring_damper model.
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blocksubs(1).Name = 'rct_mass_spring_damper/Mass';
blocksubs(1).Value = 1/um;
blocksubs(2).Name = 'rct_mass_spring_damper/Damping';
blocksubs(2).Value = uc;
blocksubs(3).Name = 'rct_mass_spring_damper/Spring Stiffness';
blocksubs(3).Value = uk;

Use this structure to obtain an slTuner interface to the model with the uncertain
values.

UST0 = slTuner('rct_mass_spring_damper','Controller',blocksubs);

You can now create tuning goals and tune the model. systune tunes the system to
optimize performance over the entire range of uncertainty. For an example illustrating
this robust-tuning workflow with slTuner, see “Robust Tuning of Mass-Spring-Damper
System” on page 6-29.

See Also
slTuner | systune | systune (for slTuner)

Related Examples
• “Robust Tuning of Mass-Spring-Damper System” on page 6-29
• “Build Tunable Control System Model With Uncertain Parameters” on page 6-17

More About
• “Robust Tuning Approaches” on page 6-2
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Robust Tuning of Mass-Spring-Damper System
This example shows how to robustly tune a PID controller for an uncertain mass-spring-
damper system modeled in Simulink.

Simulink Model of Mass-Spring-Damper System

The mass-spring-damper depicted in Figure 1 is modeled by the second-order differential
equation

where  is the force applied to the mass and  is the horizontal position of the mass.

Figure 1: Mass-Spring-Damper System.

This system is modeled in Simulink as follows:

open_system('rct_mass_spring_damper')
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We can use a PID controller to generate the effort  needed to change the position .
Tuning this PID controller is easy when the physical parameters  are known
exactly. However this is rarely the case in practice, due to a number of factors including
imprecise measurements, manufacturing tolerances, changes in operating conditions,
and wear and tear. This example shows how to take such uncertainty into account during
tuning to maintain high performance within the range of expected values for .

Uncertainty Modeling

The Simulink model uses the "most probable" or "nominal" values of :

Use the "uncertain real" (ureal) object to model the range of values that each parameter
may take. Here the uncertainty is specified as a percentage deviation from the nominal
value.

um = ureal('m',3,'Percentage',40);
uc = ureal('c',1,'Percentage',20);
uk = ureal('k',2,'Percentage',30);

Nominal Tuning

First tune the PID controller for the nominal parameter values. Here we use two simple
design requirements:
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• Position  should track a step change with a 1 second response time
• Filter coefficient  in PID controller should not exceed 100.

These requirements are expressed as tuning goals:

Req1 = TuningGoal.Tracking('r','x',1);
Req2 = TuningGoal.ControllerPoles('Controller',0,0,100);

Create an slTuner interface for tuning the "Controller" block in the Simulink model,
and use systune to tune the PID gains and best meet the two requirements.

ST0 = slTuner('rct_mass_spring_damper','Controller');

ST = systune(ST0,[Req1 Req2]);

Final: Soft = 1.02, Hard = -Inf, Iterations = 44

Use getIOTransfer to view the closed-loop step response.

Tnom = getIOTransfer(ST,'r','x');
step(Tnom)
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The nominal response meets the response time requirement and looks good. But how
robust is it to variations of ?

Robustness Analysis

To answer this question, use the "block substitution" feature of slTuner to create an
uncertain closed-loop model of the mass-spring-damper system. Block substitution lets
you specify the linearization of a particular block in a Simulink model. Here we use this
to replace the crisp values of  by the uncertain values um,uc,uk defined above.

blocksubs(1).Name = 'rct_mass_spring_damper/Mass';
blocksubs(1).Value = 1/um;
blocksubs(2).Name = 'rct_mass_spring_damper/Damping';
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blocksubs(2).Value = uc;
blocksubs(3).Name = 'rct_mass_spring_damper/Spring Stiffness';
blocksubs(3).Value = uk;
UST0 = slTuner('rct_mass_spring_damper','Controller',blocksubs);

To assess the robustness of the nominal tuning, apply the tuned PID gains to the
(untuned) uncertain model UST0 and simulate the "uncertain" closed-loop response.

% Apply result of nominal tuning (ST) to uncertain closed-loop model UST0
setBlockValue(UST0,getBlockValue(ST));
Tnom = getIOTransfer(UST0,'r','x');
rng(0), step(Tnom,25), grid
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The step plot shows the closed-loop response with the nominally tuned PID for 20
randomly selected values of  in the specified uncertainty range. Observe the
significant performance degradation for some parameter combinations, with poorly
damped oscillations and a long settling time.

Robust Tuning

To improve the robustness of the PID controller, re-tune it using the uncertain closed-
loop model UST0 rather than the nominal closed-loop model ST0. Due to the presence of
ureal components in the model, systune automatically tries to maximize performance
over the entire uncertainty range. This amounts to minimizing the worst-case value of
the "soft" tuning goals Req1 and Req2.

UST0 = slTuner('rct_mass_spring_damper','Controller',blocksubs);

UST = systune(UST0,[Req1 Req2]);

Soft: [1.02,2.92], Hard: [-Inf,-Inf], Iterations = 44
Soft: [1.03,1.43], Hard: [-Inf,-Inf], Iterations = 24
Soft: [1.04,1.04], Hard: [-Inf,-Inf], Iterations = 23
Final: Soft = 1.04, Hard = -Inf, Iterations = 91

The robust performance is only slightly worse than the nominal performance, but the
same uncertain closed-loop simulation shows a significant improvement over the nominal
design.

Trob = getIOTransfer(UST,'r','x');
rng(0), step(Tnom,Trob,25), grid
legend('Nominal tuning','Robust tuning')
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This is confirmed by plotting the worst-case gain from  to  as a function of frequency.
Note the attenuated resonance near 1 rad/s.

clf
subplot(121), wcsigma(Tnom,{1e-2,1e2}), grid
set(gca,'YLim',[-20 10]), title('Nominal tuning')
subplot(122), wcsigma(Trob,{1e-2,1e2}), grid
set(gca,'YLim',[-20 10]), title('Robust tuning'), legend('off')
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A comparison of the two PID controllers shows similar behaviors except for one key
difference. The nominally tuned PID excessively relies on "cancelling" (notching out) the
plant resonance, which is not a robust strategy in the presence of uncertainty on the
resonance frequency.

Cnom = getBlockValue(ST,'Controller');
Crob = getBlockValue(UST,'Controller');
clf, bode(Cnom,Crob), grid
legend('Nominal tuning','Robust tuning')
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For further insight, plot the performance index (maximum value of the "soft" tuning
goals Req1,Req2) as a function of the uncertain parameters  for the nominal
damping . Use the "varying parameter" feature of slTuner to create an array of
closed-loop models over a grid of  values covering their uncertainty ranges.

% Specify a 6-by-6 grid of (m,k) values for linearization
ms = linspace(um.Range(1),um.Range(2),6);
ks = linspace(uk.Range(1),uk.Range(2),6);
[ms,ks] = ndgrid(ms,ks);
params(1).Name = 'm';
params(1).Value = ms;
params(2).Name = 'k';
params(2).Value = ks;
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STP = slTuner('rct_mass_spring_damper','Controller',params);

% Evaluate performance index over (m,k) grid for nominally tuned PID
setBlockValue(STP,'Controller',Cnom)
[~,F1] = evalGoal(Req1,STP);
[~,F2] = evalGoal(Req2,STP);
Fnom = max(F1,F2);

% Evaluate performance index over (m,k) grid for robust PID
setBlockValue(STP,'Controller',Crob)
[~,F1] = evalGoal(Req1,STP);
[~,F2] = evalGoal(Req2,STP);
Frob = max(F1,F2);

% Compare the two performance surfaces
clf
subplot(211), surf(ms,ks,Fnom)
xlabel('m'), ylabel('k'), zlabel('Performance'), title('Nominal tuning (c=1)')
subplot(212), surf(ms,ks,Frob), set(gca,'ZLim',[1 2])
xlabel('m'), ylabel('k'), zlabel('Performance'), title('Robust tuning (c=1)')
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This plot shows that the nominal tuning is very sensitive to changes in mass  or spring
stiffness , while the robust tuning is essentially insensitive to these parameters. To
complete the design, use writeBlockValue to apply the robust PID gains to the
Simulink model and proceed with further validation in Simulink.

 Robust Tuning of Mass-Spring-Damper System

6-39



writeBlockValue(UST)

See Also

Related Examples
• “Model Uncertainty in Simulink for Robust Tuning” on page 6-23

More About
• “Interpreting Results of Robust Tuning” on page 6-14
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Robust Tuning of DC Motor Controller
This example shows how to robustly tune a PID controller for a DC motor with
imperfectly known parameters.

DC Motor Modeling

An uncertain model of the DC motor is derived in the "Robustness of Servo Controller for
DC Motor" example. The transfer function from applied voltage to angular velocity is
given by

where the resistance , the inductance , the EMF constant , armature constant ,
viscous friction , and inertial load  are physical parameters of the motor. These
parameters are not perfectly known and are subject to variation, so we model them as
uncertain values with a specified range or percent uncertainty.

R = ureal('R',2,'Percentage',40);
L = ureal('L',0.5,'Percentage',40);
K = ureal('K',0.015,'Range',[0.012 0.019]);
Km = K; Kb = K;
Kf = ureal('Kf',0.2,'Percentage',50);
J = ureal('J',0.02,'Percentage',20);

P = tf(Km,[J*L J*R+Kf*L Km*Kb+Kf*R]);
P.InputName = 'Voltage';
P.OutputName = 'Speed';

Time and frequency response functions like step or bode automatically sample the
uncertain parameters within their range. This is helpful to gauge the impact of
uncertainty. For example, plot the step response of the uncertain plant P and note the
large variation in plant DC gain.

step(P,getNominal(P),3)
legend('Sampled uncertainty','Nominal')
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Robust PID Tuning

To robustly tune a PID controller for this DC motor, create a tunable PID block C and
construct a closed-loop model CL0 of the feedback loop in Figure 1. Add an analysis point
dLoad at the plant output to measure the sensitivity to load disturbance.

C = tunablePID('C','pid');
AP = AnalysisPoint('dLoad');
CL0 = feedback(AP*P*C,1);
CL0.InputName = 'SpeedRef';
CL0.OutputName = 'Speed';
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Figure 1: PID control of DC motor

There are many ways to specify the desired performance. Here we focus on sensitivity to
load disturbance, roll-off, and closed-loop dynamics.

R1 = TuningGoal.Sensitivity('dLoad',tf([1.25 0],[1 2]));
R2 = TuningGoal.MaxLoopGain('dLoad',10,1);
R3 = TuningGoal.Poles('dLoad',0.1,0.7,25);

The first goal R1 specifies the desired profile for the sensitivity function. Sensitivity
should be low at low frequency for good disturbance rejection. The second goal R2
imposes -20 dB/decade roll-off past 10 rad/s. The third goal R3 specifies the minimum
decay, minimum damping, and maximum natural frequency for the closed-loop poles.

viewGoal(R1)
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viewGoal(R2)
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viewGoal(R3)
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You can now use systune to robustly tune the PID gains, that is, to try and meet the
design objectives for all possible values of the uncertain DC motor parameters. Because
local minima may exist, perform three separate tunings from three different sets of
initial gain values.

opt = systuneOptions('RandomStart',2);
rng(0), [CL,fSoft] = systune(CL0,[R1 R2 R3],opt);

Nominal tuning:
Design 1: Soft = 0.838, Hard = -Inf
Design 2: Soft = 0.839, Hard = -Inf
Design 3: Soft = 0.914, Hard = -Inf

Robust tuning of Design 1:
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Soft: [0.838,1.95], Hard: [-Inf,-Inf], Iterations = 78
Soft: [0.875,1.76], Hard: [-Inf,-Inf], Iterations = 30
Soft: [1.02,2.98], Hard: [-Inf,-Inf], Iterations = 37
Soft: [1.34,1.36], Hard: [-Inf,-Inf], Iterations = 34
Soft: [1.35,1.35], Hard: [-Inf,-Inf], Iterations = 24
Final: Soft = 1.35, Hard = -Inf, Iterations = 203

Robust tuning of Design 2:
Soft: [0.839,2.12], Hard: [-Inf,-Inf], Iterations = 40
Soft: [0.875,1.76], Hard: [-Inf,-Inf], Iterations = 29
Soft: [1.02,2.98], Hard: [-Inf,-Inf], Iterations = 37
Soft: [1.34,1.36], Hard: [-Inf,-Inf], Iterations = 34
Soft: [1.35,1.35], Hard: [-Inf,-Inf], Iterations = 24
Final: Soft = 1.35, Hard = -Inf, Iterations = 164

Robust tuning of Design 3:
Soft: [0.914,2.38], Hard: [-Inf,-Inf], Iterations = 53
Soft: [0.875,1.77], Hard: [-Inf,-Inf], Iterations = 78
Soft: [1.02,2.98], Hard: [-Inf,-Inf], Iterations = 29
Soft: [1.34,1.36], Hard: [-Inf,-Inf], Iterations = 34
Soft: [1.35,1.35], Hard: [-Inf,-Inf], Iterations = 24
Final: Soft = 1.35, Hard = -Inf, Iterations = 218

The final value is close to 1 so the tuning goals are nearly achieved throughout the
uncertainty range. The tuned PID controller is

showTunable(CL)

C =
 
             1            s    
  Kp + Ki * --- + Kd * --------
             s          Tf*s+1 

  with Kp = 33.8, Ki = 83.2, Kd = 2.34, Tf = 0.028
 
Name: C
Continuous-time PIDF controller in parallel form.

Next check how this PID rejects a step load disturbance for 30 randomly selected values
of the uncertain parameters.

S = getSensitivity(CL,'dLoad');
clf, step(usample(S,30),getNominal(S),3)
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title('Load disturbance rejection')
legend('Sampled uncertainty','Nominal')

The rejection performance remains uniform despite large plant variations. You can also
verify that the sensitivity function robustly stays within the prescribed bound.

viewGoal(R1,CL)
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Robust tuning with systune is easy. Just include plant uncertainty in the tunable
closed-loop model using ureal objects, and the software automatically tries to achieve
the tuning goals for the entire uncertainty range.

See Also

Related Examples
• “Build Tunable Control System Model With Uncertain Parameters” on page 6-17
• “Robust Tuning of Positioning System” on page 6-51
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• “Robust Tuning of Mass-Spring-Damper System” on page 6-29

More About
• “Interpreting Results of Robust Tuning” on page 6-14
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Robust Tuning of Positioning System
This example shows how to take into account model uncertainty when tuning a motion
control system.

Background

This example refines the design discussed in the "Tuning of a Digital Motion Control
System" example. The positioning system under consideration is shown below.

Figure 1: Digital motion control hardware

A physical model of the plant is shown in the "Plant Model" block of the Simulink model
rct_dmcNotch:
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Figure 2: Equations of motion

In the earlier example, we tuned the controller using "crisp" values for the physical
parameters . In reality, these parameter values are only known
approximately and may vary over time. Because the resulting model discrepancies can
adversely affect controller performance, we need to account for parameter uncertainty
during tuning to ensure robust performance over the range of possible parameter values.
This process is called robust tuning.

Modeling Uncertainty

Assume 25% uncertainty on the value of the stiffness , and 50% uncertainty on the
values of the damping coefficients . Use the ureal object to model these
uncertainty ranges.

b1 = ureal('b1',1e-6,'Percent',50);
b2 = ureal('b2',1e-6,'Percent',50);
b12 = ureal('b12',5e-7,'Percent',50);
k = ureal('k',0.013,'Percent',25);

Using the equations of motion in Figure 2, we can derive a state-space model G of the
plant expressed in terms of :

J1 = 1e-6; J2 = 1.15e-7;
A = [0 1 0 0; -k/J1 -(b1+b12)/J1 k/J1 b12/J1; 0 0 0 1; k/J2 b12/J2 -k/J2 -(b2+b12)/J2 ];
B = [ 0; 1/J1 ; 0    ; 0 ];
C = [ 0  0  1  0 ];
D  = 0;
G = ss(A,B,C,D,'InputName','u','OutputName','pos_L')
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G =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
  The model uncertainty consists of the following blocks:
    b1: Uncertain real, nominal = 1e-06, variability = [-50,50]%, 1 occurrences
    b12: Uncertain real, nominal = 5e-07, variability = [-50,50]%, 1 occurrences
    b2: Uncertain real, nominal = 1e-06, variability = [-50,50]%, 1 occurrences
    k: Uncertain real, nominal = 0.013, variability = [-25,25]%, 1 occurrences

Type "G.NominalValue" to see the nominal value, "get(G)" to see all properties, and "G.Uncertainty" to interact with the uncertain elements.

Note that the resulting model G depends on the uncertain parameters . To
assess how uncertainty impacts the plant, plot its Bode response for different values of

. By default, the bode function uses 20 randomly selected values in the
uncertainty range. Note that both the damping and natural frequency of the main
resonance are affected.

rng(0), bode(G,{1e0,1e4})
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Nominal Tuning

To compare nominal and robust tuning, we first repeat the nominal design done in the
"Tuning of a Digital Motion Control System" example. The controller consists of a lead-
lag compensator and a notch filter:

% Tunable lead-lag
LL = tunableTF('LL',1,1);

% Tunable notch (s^2+2*zeta1*wn*s+wn^2)/(s^2+2*zeta2*wn*s+wn^2)
wn = realp('wn',300);   wn.Minimum = 200;
zeta1 = realp('zeta1',1);   zeta1.Minimum = 0;   zeta1.Maximum = 1;
zeta2 = realp('zeta2',1);   zeta2.Minimum = 0;   zeta2.Maximum = 1;
N = tf([1 2*zeta1*wn wn^2],[1 2*zeta2*wn wn^2]);
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% Overall controller
C = N * LL;

Use feedback to build a closed-loop model T0 that includes both the tunable and
uncertain elements.

AP = AnalysisPoint('u',1);  % to access control signal u
T0 = feedback(G*AP*C,1);
T0.InputName = 'ref'

T0 =

  Generalized continuous-time state-space model with 1 outputs, 1 inputs, 7 states, and the following blocks:
    LL: Parametric SISO transfer function, 1 zeros, 1 poles, 1 occurrences.
    b1: Uncertain real, nominal = 1e-06, variability = [-50,50]%, 1 occurrences
    b12: Uncertain real, nominal = 5e-07, variability = [-50,50]%, 1 occurrences
    b2: Uncertain real, nominal = 1e-06, variability = [-50,50]%, 1 occurrences
    k: Uncertain real, nominal = 0.013, variability = [-25,25]%, 1 occurrences
    u: Analysis point, 1 channels, 1 occurrences.
    wn: Scalar parameter, 6 occurrences.
    zeta1: Scalar parameter, 1 occurrences.
    zeta2: Scalar parameter, 1 occurrences.

Type "ss(T0)" to see the current value, "get(T0)" to see all properties, and "T0.Blocks" to interact with the blocks.

The main tuning goals are:

• Open-loop bandwidth of 50 rad/s
• Gain and phase stability margins of at least 7.6 dB and 45 degrees

To prevent fast dynamics, we further limit the natural frequency of closed-loop poles.

s = tf('s');
R1 = TuningGoal.LoopShape('u',50/s);
R2 = TuningGoal.Margins('u',7.6,45);
R3 = TuningGoal.Poles('u',0,0,1e3);   % natural frequency < 1000

Now tune the controller parameters for the nominal plant subject to the three tuning
goals.

T = systune(getNominal(T0),[R1 R2 R3]);
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Final: Soft = 1.56, Hard = -Inf, Iterations = 65

The final value indicates that all design objectives were nominally met and the closed-
loop response looks good.
step(T), title('Nominal closed-loop response')

How robust is this design? To find out, update the uncertain closed-loop model T0 with
the nominally tuned controller parameters and plot the closed-loop step response for 10
random samples of the uncertain parameters.
Tnom = setBlockValue(T0,T);       % update T0 with tuned valued from systune
[Tnom10,S10] = usample(Tnom,10);  % sample the uncertainty
step(Tnom10,0.5)
title('Closed-loop response for 10 uncertain parameter values')
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This plot reveals significant oscillations when moving away from the nominal values of
.

Robust Tuning

Next re-tune the controller using the uncertain closed-loop model T0 instead of its
nominal value. This instructs systune to enforce the tuning goals over the entire
uncertainty range.

[Trob,fSoft,~,Info] = systune(T0,[R1 R2 R3]);

Soft: [1.56,2.85], Hard: [-Inf,-Inf], Iterations = 65
Soft: [1.98,2.94], Hard: [-Inf,-Inf], Iterations = 40
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Soft: [2.01,2.01], Hard: [-Inf,-Inf], Iterations = 22
Final: Soft = 2.01, Hard = -Inf, Iterations = 127

The achieved performance is a bit worse than for nominal tuning, which is expected
given the additional robustness constraint. Compare performance with the nominal
design.

Trob10 = usubs(Trob,S10); % use the same 10 uncertainty samples
step(Tnom10,Trob10,0.5)
title('Closed-loop response for 10 uncertain parameter values')
legend('Nominal tuning','Robust tuning')

The robust design has more overshoot but is largely free of oscillations. Verify that the
plant resonance is robustly attenuated.
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viewGoal(R1,Trob)

Finally, compare the nominal and robust controllers.

Cnom = setBlockValue(C,Tnom);
Crob = setBlockValue(C,Trob);
bode(Cnom,Crob), grid, title('Controller')
legend('Nominal tuning','Robust tuning')
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Not surprisingly, the robust controller uses a wider and deeper notch to accommodate the
damping and natural frequency variations in the plant resonance. Using systune's
robust tuning capability, you can automatically position and calibrate the notch to best
compensate for such variability.

Worst-Case Analysis

The fourth output argument of systune contains information about worst-case
combinations of uncertain parameters. These combinations are listed in decreasing order
of severity.

WCU = Info.wcPert
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WCU = 

  4×1 struct array with fields:

    b1
    b12
    b2
    k

WCU(1)  % worst-overall combination

ans = 

  struct with fields:

     b1: 5.0000e-07
    b12: 7.5000e-07
     b2: 5.0000e-07
      k: 0.0163

To analyze the worst-case responses, substitute these parameter values in the closed-loop
model Trob.

Twc = usubs(Trob,WCU);
step(Twc,0.5)
title('Closed-loop response for worst-case parameter combinations')
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See Also

Related Examples
• “Build Tunable Control System Model With Uncertain Parameters” on page 6-17
• “Robust Vibration Control in Flexible Beam” on page 6-64
• “Robust Tuning of Mass-Spring-Damper System” on page 6-29
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More About
• “Interpreting Results of Robust Tuning” on page 6-14
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Robust Vibration Control in Flexible Beam
This example shows how to robustly tune a controller for reducing vibrations in a flexible
beam. This example is adapted from "Control System Design" by G. Goodwin, S. Graebe,
and M. Salgado.

Uncertain Model of Flexible Beam

Figure 1 depicts an active vibration control system for a flexible beam.

Figure 1: Active control of flexible beam

In this setup, a sensor measures the tip position  and the actuator is a piezoelectric
patch delivering a force . We can model the transfer function from control input  to
tip position  using finite-element analysis. Keeping only the first six modes, we obtain a
plant model of the form

with the following nominal values for the amplitudes :

The damping factors  are often poorly known and are assumed to range between 0.0002
and 0.02. Similarly, the natural frequencies are only approximately known and we
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assume 20% uncertainty on their location. To construct an uncertain model of the flexible
beam, use the ureal object to specify the uncertainty range for the damping and natural
frequencies. To simplify, we assume that all modes have the same damping factor .

% Damping factor
zeta = ureal('zeta',0.002,'Range',[0.0002,0.02]);

% Natural frequencies
w1 = ureal('w1',18.95,'Percent',20);
w2 = ureal('w2',118.76,'Percent',20);
w3 = ureal('w3',332.54,'Percent',20);
w4 = ureal('w4',651.66,'Percent',20);
w5 = ureal('w5',1077.2,'Percent',20);
w6 = ureal('w6',1609.2,'Percent',20);

Next combine these uncertain coefficients into the expression for .

alpha = [9.72e-4 0.0122 0.0012 -0.0583 -0.0013 0.1199];
G = tf(alpha(1),[1 2*zeta*w1 w1^2]) + tf(alpha(2),[1 2*zeta*w2 w2^2]) + ...
    tf(alpha(3),[1 2*zeta*w3 w3^2]) + tf(alpha(4),[1 2*zeta*w4 w4^2]) + ...
    tf(alpha(5),[1 2*zeta*w5 w5^2]) + tf(alpha(6),[1 2*zeta*w6 w6^2]);
G.InputName = 'uG';  G.OutputName = 'y';

Visualize the impact of uncertainty on the transfer function from  to . The bode
function automatically shows the responses for 20 randomly selected values of the
uncertain parameters.

rng(0), bode(G,{1e0,1e4}), grid
title('Uncertain beam model')
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Robust LQG Control

LQG control is a natural formulation for active vibration control. With systune, you are
not limited to a full-order optimal LQG controller and can tune controllers of any order.
Here for example, let's tune a 6th-order state-space controller (half the plant order).

C = tunableSS('C',6,1,1);

The LQG control setup is depicted in Figure 2. The signals  and  are the process and
measurement noise, respectively.
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Figure 2: LQG control structure

Build a closed-loop model of the block diagram in Figure 2.

C.InputName = 'yn';  C.OutputName = 'u';
S1 = sumblk('yn = y + n');
S2 = sumblk('uG = u + d');
CL0 = connect(G,C,S1,S2,{'d','n'},{'y','u'});

Note that CL0 depends on both the tunable controller C and the uncertain damping and
natural frequencies.

CL0

CL0 =

  Generalized continuous-time state-space model with 2 outputs, 2 inputs, 18 states, and the following blocks:
    C: Parametric 1x1 state-space model, 6 states, 1 occurrences.
    w1: Uncertain real, nominal = 18.9, variability = [-20,20]%, 3 occurrences
    w2: Uncertain real, nominal = 119, variability = [-20,20]%, 3 occurrences
    w3: Uncertain real, nominal = 333, variability = [-20,20]%, 3 occurrences
    w4: Uncertain real, nominal = 652, variability = [-20,20]%, 3 occurrences
    w5: Uncertain real, nominal = 1.08e+03, variability = [-20,20]%, 3 occurrences
    w6: Uncertain real, nominal = 1.61e+03, variability = [-20,20]%, 3 occurrences
    zeta: Uncertain real, nominal = 0.002, range = [0.0002,0.02], 6 occurrences

Type "ss(CL0)" to see the current value, "get(CL0)" to see all properties, and "CL0.Blocks" to interact with the blocks.

Use an LQG criterion as control objective. This tuning goal lets you specify the noise
covariances and the weights on the performance variables.

R = TuningGoal.LQG({'d','n'},{'y','u'},diag([1,1e-10]),diag([1 1e-12]));
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Now tune the controller C to minimize the LQG cost over the entire uncertainty range.

[CL,fSoft,~,Info] = systune(CL0,R);

Soft: [5.41e-05,0.000108], Hard: [-Inf,-Inf], Iterations = 108
Soft: [6.7e-05,Inf], Hard: [-Inf,Inf], Iterations = 107
Soft: [6.96e-05,7.38e-05], Hard: [-Inf,-Inf], Iterations = 86
Soft: [7.21e-05,7.21e-05], Hard: [-Inf,-Inf], Iterations = 68
Final: Soft = 7.21e-05, Hard = -Inf, Iterations = 369

Validation

Compare the open- and closed-loop Bode responses from  to  for 20 randomly chosen
values of the uncertain parameters. Note how the controller clips the first three peaks in
the Bode response.

Tdy = getIOTransfer(CL,'d','y');
bode(G,Tdy,{1e0,1e4})
title('Transfer from disturbance to tip position')
legend('Open loop','Closed loop')
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Next plot the open- and closed-loop responses to an impulse disturbance . For
readability, the open-loop response is plotted only for the nominal plant.

impulse(getNominal(G),Tdy,5)
title('Response to impulse disturbance d')
legend('Open loop','Closed loop')
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Finally, systune also provides insight into the worst-case combinations of damping and
natural frequency values. This information is available in the output argument Info.

WCU = Info.wcPert

WCU = 

  3x1 struct array with fields:

    w1
    w2
    w3
    w4
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    w5
    w6
    zeta

Use this data to plot the impulse response for the two worst-case scenarios.

impulse(usubs(Tdy,WCU),5)
title('Worst-case response to impulse disturbance d')
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See Also

Related Examples
• “Build Tunable Control System Model With Uncertain Parameters” on page 6-17
• “Robust Tuning of DC Motor Controller” on page 6-41
• “Robust Tuning of Mass-Spring-Damper System” on page 6-29
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More About
• “Interpreting Results of Robust Tuning” on page 6-14

 See Also
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Fault-Tolerant Control of a Passenger Jet
This example shows how to tune a fixed-structure controller for multiple operating
modes of the plant.

Background

This example deals with fault-tolerant flight control of passenger jet undergoing outages
in the elevator and aileron actuators. The flight control system must maintain stability
and meet performance and comfort requirements in both nominal operation and
degraded conditions where some actuators are no longer effective due to control surface
impairment. Wind gusts must be alleviated in all conditions. This application is
sometimes called reliable control as aircraft safety must be maintained in extreme flight
conditions.

Aircraft Model

The control system is modeled in Simulink.

addpath(fullfile(matlabroot,'examples','control_featured','main')) % add example data
open_system('faultTolerantAircraft')
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The aircraft is modeled as a rigid 6th-order state-space system with the following state
variables (units are mph for velocities and deg/s for angular rates):

• u: x-body axis velocity
• w: z-body axis velocity
• q: pitch rate
• v: y-body axis velocity
• p: roll rate
• r: yaw rate

The state vector is available for control as well as the flight-path bank angle rate mu
(deg/s), the angle of attack alpha (deg), and the sideslip angle beta (deg). The control
inputs are the deflections of the right elevator, left elevator, right aileron, left aileron,
and rudder. All deflections are in degrees. Elevators are grouped symmetrically to
generate the angle of attack. Ailerons are grouped anti-symmetrically to generate roll
motion. This leads to 3 control actions as shown in the Simulink model.
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The controller consists of state-feedback control in the inner loop and MIMO integral
action in the outer loop. The gain matrices Ki and Kx are 3-by-3 and 3-by-6, respectively,
so the controller has 27 tunable parameters.

Actuator Failures

We use a 9x5 matrix to encode the nominal mode and various actuator failure modes.
Each row corresponds to one flight condition, a zero indicating outage of the
corresponding deflection surface.

OutageCases = [...
   1 1 1 1 1; ... % nominal operational mode
   0 1 1 1 1; ... % right elevator outage
   1 0 1 1 1; ... % left elevator outage
   1 1 0 1 1; ... % right aileron outage
   1 1 1 0 1; ... % left aileron outage
   1 0 0 1 1; ... % left elevator and right aileron outage
   0 1 0 1 1; ... % right elevator and right aileron outage
   0 1 1 0 1; ... % right elevator and left aileron outage
   1 0 1 0 1; ... % left elevator and left aileron outage
   ];

Design Requirements

The controller should:

1 Provide good tracking performance in mu, alpha, and beta in nominal operating
mode with adequate decoupling of the three axes

2 Maintain performance in the presence of wind gust of 10 mph
3 Limit stability and performance degradation in the face of actuator outage.

To express the first requirement, you can use an LQG-like cost function that penalizes
the integrated tracking error e and the control effort u:

The diagonal weights  and  are the main tuning knobs for trading responsiveness
and control effort and emphasizing some channels over others. Use the
WeightedVariance requirement to express this cost function, and relax the
performance weight  by a factor 2 for the outage scenarios.
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We = diag([10 20 15]);   Wu = eye(3);

% Nominal tracking requirement
SoftNom = TuningGoal.WeightedVariance('setpoint',{'e','u'}, blkdiag(We,Wu), []);
SoftNom.Models = 1;    % nominal model

% Tracking requirement for outage conditions
SoftOut = TuningGoal.WeightedVariance('setpoint',{'e','u'}, blkdiag(We/2,Wu), []);
SoftOut.Models = 2:9;  % outage scenarios

For wind gust alleviation, limit the variance of the error signal e due to the white noise
wg driving the wind gust model. Again use a less stringent requirement for the outage
scenarios.

% Nominal gust alleviation requirement
HardNom = TuningGoal.Variance('wg','e',0.02);
HardNom.Models = 1;

% Gust alleviation requirement for outage conditions
HardOut = TuningGoal.Variance('wg','e',0.1);
HardOut.Models = 2:9;

Controller Tuning for Nominal Flight

Set the wind gust speed to 10 mph and initialize the tunable state-feedback and
integrators gains of the controller.

GustSpeed = 10;
Ki = eye(3);
Kx = zeros(3,6);

Use the slTuner interface to set up the tuning task. List the blocks to be tuned and
specify the nine flight conditions by varying the outage variable in the Simulink model.
Because you can only vary scalar parameters in slTuner, independently specify the
values taken by each entry of the outage vector.

OutageData = struct(...
   'Name',{'outage(1)','outage(2)','outage(3)','outage(4)','outage(5)'},...
   'Value',mat2cell(OutageCases,9,[1 1 1 1 1]));
ST0 = slTuner('faultTolerantAircraft',{'Ki','Kx'},OutageData);

Use systune to tune the controller gains subject to the nominal requirements. Treat the
wind gust alleviation as a hard constraint.
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[ST,fSoft,gHard]  = systune(ST0,SoftNom,HardNom);

Final: Soft = 22.6, Hard = 0.9995, Iterations = 282

Retrieve the gain values and simulate the responses to step commands in mu, alpha,
beta for the nominal and degraded flight conditions. All simulations include wind gust
effects, and the red curve is the nominal response.

Ki = getBlockValue(ST, 'Ki');  Ki = Ki.d;
Kx = getBlockValue(ST, 'Kx');  Kx = Kx.d;

% Bank-angle setpoint simulation
plotResponses(OutageCases,1,0,0);
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% Angle-of-attack setpoint simulation
plotResponses(OutageCases,0,1,0);

% Sideslip-angle setpoint simulation
plotResponses(OutageCases,0,0,1);
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The nominal responses are good but the deterioration in performance is unacceptable
when faced with actuator outage.

Controller Tuning for Impaired Flight

To improve reliability, retune the controller gains to meet the nominal requirement for
the nominal plant as well as the relaxed requirements for all eight outage scenarios.

[ST,fSoft,gHard]  = systune(ST0,[SoftNom;SoftOut],[HardNom;HardOut]);

Final: Soft = 25.8, Hard = 0.99689, Iterations = 486
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The optimal performance (square root of LQG cost ) is only slightly worse than for the
nominal tuning (26 vs. 23). Retrieve the gain values and rerun the simulations (red curve
is the nominal response).

Ki = getBlockValue(ST, 'Ki');  Ki = Ki.d;
Kx = getBlockValue(ST, 'Kx');  Kx = Kx.d;

% Bank-angle setpoint simulation
plotResponses(OutageCases,1,0,0);

% Angle-of-attack setpoint simulation
plotResponses(OutageCases,0,1,0);
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% Sideslip-angle setpoint simulation
plotResponses(OutageCases,0,0,1);

6 Robust Tuning

6-82



The controller now provides acceptable performance for all outage scenarios considered
in this example. The design could be further refined by adding specifications such as
minimum stability margins and gain limits to avoid actuator rate saturation.

rmpath(fullfile(matlabroot,'examples','control_featured','main')) % remove example data

See Also

Related Examples
• “Robust Tuning of Mass-Spring-Damper System” on page 6-29
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6-83



More About
• “Robust Tuning Approaches” on page 6-2
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Tuning for Multiple Values of Plant Parameters
This example shows how to use Control System Tuner to tune a control system when
there are parameter variations in the plant. The control system of this example is an
active suspension on a quarter-car model. The example uses Control System Tuner to
tune the system to meet performance objectives when parameters in the plant vary from
their nominal values.

Quarter-Car Model and Active Suspension Control

A simple quarter-car model of the active suspension system is shown in Figure 1. The
quarter-car model consists of two masses, car chassis of mass  and the wheel assembly
of mass . There is a spring  and damper  in between to model the passive spring
and shock absorber. The tire between the wheel assembly and the road is modeled by the
spring .

Active suspension introduces a force  between the chassis and wheel assembly and
allows the designer to balance driving objectives such as passenger comfort, road
handling using a feedback controller.
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Figure 1: Quarter-car model of active suspension.

Control Architecture

The quarter-car model is implemented using Simscape Multibody. The following
Simulink model contains the quarter-car model with active suspension, controller and
actuator dynamics. Its inputs are road disturbance and the force for the active
suspension. Its outputs are the suspension deflection and body acceleration. The
controller uses these measurements to send control signal to the actuator which creates
the force for active suspension.

mdl = fullfile(matlabroot,'examples','control_featured','rct_suspension.slx');
open_system(mdl)

Control Objectives

Our goal is to achieve three control objectives:

• Good handling defined from road disturbance to suspension deflection.
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• User comfort defined from road disturbance to body acceleration.
• Reasonable control bandwidth.

The nominal values of spring constant  and damper  between the body and the wheel
assembly are not exact and due to the imperfections in the materials, these values can be
constant but different. Try to satisfy these control objectives under parameter variations.

Model the road disturbance of magnitude seven centimeters and use the constant weight.

Wroad = ss(0.07);

Define the closed-loop target for handling from road disturbance to suspension deflection
as

HandlingTarget = 0.044444 * tf([1/8 1],[1/80 1]);

Define the target for comfort from road disturbance to body acceleration as

ComfortTarget = 0.6667 * tf([1/0.45 1],[1/150 1]);

Limit the control bandwidth by the weight function from road disturbance to the control
signal

Wact = tf(0.1684*[1 500],[1 50]);

Explanation on selecting the closed-loop targets and the weight function is given in the
example “Robust Control of an Active Suspension”

Controller Tuning

Double click to the orange block in Simulink model to open the Control System Tuner
session for active suspension control. Tuned block is set to the second order Controller
and three tuning goals are defined to achieve the handling, comfort and control
bandwidth as described above. In order to see the performance of the tuning, the step
responses from road disturbance to suspension deflection, body acceleration and control
force are plotted.

Handling, Comfort and Control Bandwidth goals are defined as gain limits,
HandlingTarget/Wroad, ComfortTarget/Wroad and Wact/Wroad. All gain functions
are divided by Wroad to incorporate the road disturbance.
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The open-loop system with zero controller violates the handling goal and results in
highly oscillatory behavior for both suspension deflection and body acceleration with long
settling time.

Figure 2: Control System Tuner with Session File.

Tune the controller using Control System Tuner by clicking Tune button in Tuning Tab.
As shown in Figure 3, this design satisfies the tuning goals and the responses are less
oscillatory converging fast to zero.
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Figure 3: Control System Tuner after tuning.

Controller Tuning for Multiple Parameter Values

Now, try to tune the controller for multiple parameter values. The default value for car
chassis of mass  is 300 kg. Vary the mass to 100, 200 and 300 for different operation
conditions.

In order to vary these parameters in Control System Tuner, go the Control System
Tab and select Select parameters to Vary in Parameter Variations. Define the
parameters in the opening document.
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Figure 4: Defining parameter variations.

Click Manage Parameters. In the Select model variables dialog box, select Mb.
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Figure 5: Select a parameter to vary from the model.

Now, the parameter Mb is added with default values in the parameter variations table.

Figure 6: Parameter variations table with default values.

Generate variations quickly from Generate Values by defining values 100, 200, 300 for
Mb and clicking Overwrite.
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Figure 7: Generate values window.

All values are populated in the parameter variations table. Click Apply button to set the
parameter variations to the Control System Tuner.
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Figure 8: Parameter variations table with updated values.

Multiple lines appear in tuning goal and response plots due to the parameter variations.
The designed controller for nominal parameter value causes unstable closed-loop system.

 Tuning for Multiple Values of Plant Parameters

6-93



Figure 9: Control System Tuner with multiple parameter variations.

Tune the controller to satisfy handling, comfort and control bandwidth objectives by
clicking Tune button in Tuning Tab. Tuning algorithm tries to satisfy these objectives
not only for the nominal parameters, but all parameter variations. This is a challenging
task compared to nominal design as shown in Figure 10.
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Figure 10: Control System Tuner with multiple parameter variations (Tuned).

Control System Tuner tunes the controller parameters on the linearized control system.
Now, to examine the performance of the tuned parameters on the Simulink model,
update the controller in the Simulink model by clicking Update Blocks in Control
System Tab.

Using Simulation Data Inspector, simulate the model for the parameter variations
and the results are shown in Figure 11. For all three parameter variations, controller
tries to minimize the suspension deflection, body acceleration with minimal control
effort.
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Figure 11: Controller performance on the Simulink model.

See Also

Related Examples
• “Robust Tuning of Mass-Spring-Damper System” on page 6-29
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More About
• “Robust Tuning Approaches” on page 6-2
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Tuning Fixed Control Architectures

• “What Is a Fixed-Structure Control System?” on page 7-2
• “Difference Between Fixed-Structure Tuning and Traditional H-Infinity Synthesis”

on page 7-3
• “What Is hinfstruct?” on page 7-4
• “Formulating Design Requirements as H-Infinity Constraints” on page 7-5
• “Structured H-Infinity Synthesis Workflow” on page 7-6
• “Build Tunable Closed-Loop Model for Tuning with hinfstruct” on page 7-7
• “Tune the Controller Parameters” on page 7-14
• “Interpret the Outputs of hinfstruct” on page 7-15
• “Validate the Controller Design” on page 7-16
• “Fixed-Structure H-infinity Synthesis with HINFSTRUCT” on page 7-20
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What Is a Fixed-Structure Control System?
Fixed-structure control systems are control systems that have predefined architectures
and controller structures. For example:

• A single-loop SISO control architecture where the controller is a fixed-order transfer
function, a PID controller, or a PID controller plus a filter.

• A MIMO control architecture where the controller has fixed order and structure. For
example, a 2-by-2 decoupling matrix plus two PI controllers is a MIMO controller of
fixed order and structure.

• A multiple-loop SISO or MIMO control architecture, including nested or cascaded
loops, with multiple gains and dynamic components to tune.

You can use systune, looptune or hinfstruct for frequency-domain tuning of
virtually any SISO or MIMO feedback architecture to meet your design requirements.
You can use both approaches to tune fixed structure control systems in either MATLAB
or Simulink (requires Simulink Control Design).

See Also

Related Examples
• “Difference Between Fixed-Structure Tuning and Traditional H-Infinity Synthesis”

on page 7-3
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Difference Between Fixed-Structure Tuning and Traditional H-
Infinity Synthesis

All of the tuning commands systune, looptune, and hinfstruct tune the controller
parameters by optimizing the H∞ norm across a closed-loop system (see [1]). However,
these functions differ in important ways from traditional H∞ methods.

Traditional H∞ synthesis (performed using the hinfsyn or loopsyn commands) designs
a full-order, centralized controller. Traditional H∞ synthesis provides no way to impose
structure on the controller and often results in a controller that has high-order dynamics.
Thus, the results can be difficult to map to your specific real-world control architecture.
Additionally, traditional H∞ synthesis requires you to express all design requirements in
terms of a single weighted MIMO transfer function.

In contrast, structured H∞ synthesis allows you to describe and tune the specific control
system with which you are working. You can specify your control architecture, including
the number and configuration of feedback loops. You can also specify the complexity,
structure, and parameterization of each tunable component in your control system, such
as PID controllers, gains, and fixed-order transfer functions. Additionally, you can easily
combine requirements on separate closed-loop transfer functions.

Bibliography

[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE Transactions on
Automatic Control, Vol. 51, Number 1, 2006, pp. 71-86.

See Also

Related Examples
• “What Is hinfstruct?” on page 7-4
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What Is hinfstruct?
hinfstruct lets you use the frequency-domain methods of H∞ synthesis to tune control
systems that have predefined architectures and controller structures.

To use hinfstruct, you describe your control system as a Generalized LTI model
(Control System Toolbox) that keeps track of the tunable components of your system.
hinfstruct tunes those parameters by minimizing the closed-loop gain from the system
inputs to the system outputs (the H∞ norm on page 5-2).

hinfstruct is the counterpart of hinfsyn for fixed-structure controllers. The
methodology and algorithm behind hinfstruct are described in [1].

See Also

Related Examples
• “Structured H-Infinity Synthesis Workflow” on page 7-6
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Formulating Design Requirements as H-Infinity Constraints
Control design requirements are typically performance measures such as response speed,
control bandwidth, roll-off, and steady-state error. To use hinfstruct, first express the
design requirements as constraints on the closed-loop gain.

You can formulate design requirements in terms of the closed-loop gain using loop
shaping. Loop shaping is a common systematic technique for defining control design
requirements for H∞ synthesis. In loop shaping, you first express design requirements as
open-loop gain requirements.

For example, a requirement of good reference tracking and disturbance rejection is
equivalent to high (>1) open-loop gain at low frequency. A requirement of insensitivity to
measurement noise or modeling error is equivalent to a low (<1) open-loop gain at high
frequency. You can then convert these open-loop requirements to constraints on the
closed-loop gain using weighting functions.

This formulation of design requirements results in a H∞ constraint of the form:
H s( ) <

•
1,

where H(s) is a closed-loop transfer function that aggregates and normalizes the various
requirements.

For an example of how to formulate design requirements for H∞ synthesis using loop
shaping, see “Fixed-Structure H-infinity Synthesis with HINFSTRUCT” on page 7-20.

For more information about constructing weighting functions from design requirements,
see “H-Infinity Performance” on page 5-9.
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Structured H-Infinity Synthesis Workflow
Performing structured H∞ synthesis requires the following steps:

1 Formulate your design requirements as H∞ constraints on page 7-5, which are
constraints on the closed-loop gains from specific system inputs to specific system
outputs.

2 Build tunable models on page 7-7 of the closed-loop transfer functions of Step 1.
3 Tune the control system on page 7-14 using hinfstruct.
4 Validate the tuned control system on page 7-16.
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Build Tunable Closed-Loop Model for Tuning with hinfstruct
In “Formulating Design Requirements as H-Infinity Constraints” on page 7-5 you
expressed your design requirements as a constraint on the H∞ norm of a closed-loop
transfer function H(s).

The next step is to create a Generalized LTI model (Control System Toolbox) of H(s) that
includes all of the fixed and tunable elements of the control system. The model also
includes any weighting functions that represent your design requirements. There are two
ways to obtain this tunable model of your control system:

• Construct the model using Control System Toolbox commands. on page 7-7
• Obtain the model from a Simulink model using Simulink Control Design commands.

on page 7-11

Constructing the Closed-Loop System Using Control System Toolbox
Commands

To construct the tunable generalized linear model of your closed-loop control system in
MATLAB:

1 Use commands such as tf, zpk, and ss to create numeric linear models that
represent the fixed elements of your control system and any weighting functions that
represent your design requirements.

2 Use tunable models (either Control Design Blocks or Generalized LTI models) to
model the tunable elements of your control system. For more information about
tunable models, see “Models with Tunable Coefficients” (Control System Toolbox).

3 Use model-interconnection commands such as series, parallel, and connect to
construct your closed-loop system from the numeric and tunable models.

Example: Modeling a Control System With a Tunable PI Controller and Tunable Filter

This example shows how to construct a tunable generalized linear model of the following
control system for tuning with hinfstruct.
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This block diagram represents a head-disk assembly (HDA) in a hard disk drive. The
architecture includes the plant G in a feedback loop with a PI controller C and a low-pass
filter, F = a/(s+a). The tunable parameters are the PI gains of C and the filter
parameter a.

The block diagram also includes the weighting functions LS and 1/LS, which express the
loop-shaping requirements. Let T(s) denote the closed-loop transfer function from inputs
(r,nw) to outputs (y,ew). Then, the H∞ constraint:
T s( ) <

•
1
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This value of LS corresponds to the following open-loop response shape.
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To tune the HDA control system with hinfstruct, construct a tunable model of the
closed-loop system T(s), including the weighting functions, as follows.

1 Load the plant G from a saved file.

load hinfstruct_demo G

G is a 9th-order SISO state-space (ss) model.
2 Create a tunable model of the PI controller.

You can use the predefined Control Design Block tunablePID to represent a
tunable PI controller.
C = tunablePID('C','pi');
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3 Create a tunable model of the low-pass filter.

Because there is no predefined Control Design Block for the filter F = a/(s+a), use
realp to represent the tunable filter parameter a. Then create a tunable genss
model representing the filter.
a = realp('a',1);
F = tf(a,[1 a]);

4 Specify the target loop shape LC.

wc = 1000;
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);

5 Label the inputs and outputs of all the components of the control system.

Labeling the I/Os allows you to connect the elements to build the closed-loop system
T(s).
Wn = 1/LS;
Wn.InputName = 'nw';
Wn.OutputName = 'n';
We = LS;
We.InputName = 'e';
We.OutputName = 'ew';
C.InputName = 'e';
C.OutputName = 'u';
F.InputName = 'yn';
F.OutputName = 'yf';

6 Specify the summing junctions in terms of the I/O labels of the other components of
the control system.
Sum1 = sumblk('e = r - yf');
Sum2 = sumblk('yn = y + n');

7 Use connect to combine all the elements into a complete model of the closed-loop
system T(s).
T0 = connect(G,Wn,We,C,F,Sum1,Sum2,{'r','nw'},{'y','ew'});

T0 is a genss object, which is a Generalized LTI model representing the closed-loop
control system with weighting functions. The Blocks property of T0 contains the tunable
blocks C and a.

T0.Blocks
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ans = 

  struct with fields:

    C: [1x1 tunablePID]
    a: [1x1 realp]

For more information about generalized models of control systems that include both
numeric and tunable components, see “Models with Tunable Coefficients” (Control
System Toolbox).

You can now use hinfstruct to tune the parameters of this control system. See “Tune
the Controller Parameters” on page 7-14.

In this example, the control system model T0 is a continuous-time model (T0.Ts = 0).
You can also use hinfstruct with a discrete-time model, provided that you specify a
definite sample time (T0.Ts ≠ –1).

Constructing the Closed-Loop System Using Simulink Control Design
Commands
If you have a Simulink model of your control system and Simulink Control Design
software, use slTuner to create an interface to the Simulink model of your control
system. When you create the interface, you specify which blocks to tune in your model.
The slTuner interface allows you to extract a closed-loop model for tuning with
hinfstruct.

Example: Creating a Weighted Tunable Model of Control System Starting From a Simulink
Model

This example shows how to construct a tunable generalized linear model of the control
system in the Simulink model rct_diskdrive.

To create a generalized linear model of this control system (including loop-shaping
weighting functions):

1 Open the model.

open('rct_diskdrive');
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2 Create an slTuner interface to the model. The interface allows you to specify the
tunable blocks and extract linearized open-loop and closed-loop responses. (For more
information about the interface, see the slTuner reference page.)
ST0 = slTuner('rct_diskdrive',{'C','F'});

This command specifies that C and F are the tunable blocks in the model. The
slTuner interface automatically parametrizes these blocks. The default
parametrization of the transfer function block F is a transfer function with two free
parameters. Because F is a low-pass filter, you must constrain its coefficients. To do
so, specify a custom parameterization of F.
a = realp('a',1);    % filter coefficient
setBlockParam(ST0,'F',tf(a,[1 a]));

3 Extract a tunable model of the closed-loop transfer function you want to tune.
T0 = getIOTransfer(ST0,{'r','n'},{'y','e'});

This command returns a genss model of the linearized closed-loop transfer function
from the reference and noise inputs r,n to the measurement and error outputs y,e.
The error output is needed for the loop-shaping weighting function.

4 Define the loop-shaping weighting functions and append them to T0.
wc = 1000;
s = tf('s');
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LS = (1+0.001*s/wc)/(0.001+s/wc);

T0 = blkdiag(1,LS) * T0 * blkdiag(1,1/LS);

The generalized linear model T0 is a tunable model of the closed-loop transfer function
T(s), discussed in “Example: Modeling a Control System With a Tunable PI Controller
and Tunable Filter” on page 7-7. T(s) is a weighted closed-loop model of the control
system of rct_diskdrive. Tuning T0 to enforce the H∞ constraint
T s( ) <

•
1

approximately enforces the target loop shape LS.

You can now use hinfstruct to tune the parameters of this control system. See “Tune
the Controller Parameters” on page 7-14.

 Build Tunable Closed-Loop Model for Tuning with hinfstruct

7-13



Tune the Controller Parameters
After you obtain the genss model representing your control system, use hinfstruct to
tune the tunable parameters in the genss model .

hinfstruct takes a tunable linear model as its input.

For example, you can tune controller parameters for the example discussed in “Build
Tunable Closed-Loop Model for Tuning with hinfstruct” on page 7-7 using the following
command:

[T,gamma,info] = hinfstruct(T0);

Final: Peak gain = 3.66, Iterations = 112

This command returns the following outputs:

• T, a genss model object containing the tuned values of C and a.
• gamma, the minimum peak closed-loop gain of T achieved by hinfstruct.
• info, a structure containing additional information about the minimization runs.

See Also

Related Examples
• “Interpret the Outputs of hinfstruct” on page 7-15
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Interpret the Outputs of hinfstruct

Output Model is Tuned Version of Input Model

T contains the same tunable components as the input closed-loop model T0. However, the
parameter values of T are now tuned to minimize the H∞ norm of this transfer function.

Interpreting gamma

gamma is the smallest H∞ norm achieved by the optimizer. Examine gamma to determine
how close the tuned system is to meeting your design constraints. If you normalize your
H∞ constraints, a final gamma value of 1 or less indicates that the constraints are met. A
final gamma value exceeding 1 by a small amount indicates that the constraints are
nearly met.

The value of gamma that hinfstruct returns is a local minimum of the gain
minimization problem. For best results, use the RandomStart option to hinfstruct to
obtain several minimization runs. Setting RandomStart to an integer N > 0 causes
hinfstruct to run the optimization N additional times, beginning from parameter
values it chooses randomly. For example:

opts = hinfstructOptions('RandomStart',5);
[T,gamma,info] = hinfstruct(T0,opts);

You can examine gamma for each run to identify an optimization result that meets your
design requirements.

For more details about hinfstruct, its options, and its outputs, see the hinfstruct
and hinfstructOptions reference pages.

See Also

Related Examples
• “Validate the Controller Design” on page 7-16
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Validate the Controller Design
To validate the hinfstruct control design, analyze the tuned output models described
in “Interpret the Outputs of hinfstruct” on page 7-15. Use these tuned models to examine
the performance of the tuned system.

Validating the Design in MATLAB

This example shows how to obtain the closed-loop step response of a system tuned with
hinfstruct in MATLAB.

You can use the tuned versions of the tunable components of your system to build closed-
loop or open-loop numeric LTI models of the tuned control system. You can then analyze
open-loop or closed-loop performance using other Control System Toolbox tools.

In this example, create and analyze a closed-loop model of the HDA system tuned in
“Tune the Controller Parameters” on page 7-14. To do so, use getIOTransfer to extract
from the tuned control system the transfer function between the step input and the
measured output.

Try = getIOTransfer(T,'r','y');
step(Try)
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Validating the Design in Simulink

This example shows how to write tuned values to your Simulink model for validation.

The slTuner interface linearizes your Simulink model. As a best practice, validate the
tuned parameters in your nonlinear model. You can use the slTuner interface to do so.

In this example, write tuned parameters to the rct_diskdrive system tuned in “Tune
the Controller Parameters” on page 7-14.

Make a copy of the slTuner description of the control system, to preserve the original
parameter values. Then propagate the tuned parameter values to the copy.
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ST = copy(ST0);
setBlockValue(ST,T);

This command writes the parameter values from the tuned, weighted closed-loop model T
to the corresponding parameters in the interface ST.

You can examine the closed-loop responses of the linearized version of the control system
represented by ST. For example:

Try = getIOTransfer(ST,'r','y');
step(Try)
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Since hinfstruct tunes a linearized version of your system, you should also validate
the tuned controller in the full nonlinear Simulink model. To do so, write the parameter
values from the slTuner interface to the Simulink model.

writeBlockValue(ST)

You can now simulate the model using the tuned parameter values to validate the
controller design.

See Also

Related Examples
• “Fixed-Structure H-infinity Synthesis with HINFSTRUCT” on page 7-20
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Fixed-Structure H-infinity Synthesis with HINFSTRUCT
This example uses the hinfstruct command to tune a fixed-structure controller subject
to  constraints.

Introduction

The hinfstruct command extends classical  synthesis (see hinfsyn) to fixed-
structure control systems. This command is meant for users already comfortable with the
hinfsyn workflow. If you are unfamiliar with  synthesis or find augmented plants
and weighting functions intimidating, use systune and looptune instead. See "Tuning
Control Systems with SYSTUNE" for the systune counterpart of this example.

Plant Model

This example uses a 9th-order model of the head-disk assembly (HDA) in a hard-disk
drive. This model captures the first few flexible modes in the HDA.

load hinfstruct_demo G
bode(G), grid
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We use the feedback loop shown below to position the head on the correct track. This
control structure consists of a PI controller and a low-pass filter in the return path. The
head position y should track a step change r with a response time of about one
millisecond, little or no overshoot, and no steady-state error.
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Figure 1: Control Structure

Tunable Elements

There are two tunable elements in the control structure of Figure 1: the PI controller
 and the low-pass filter

Use the tunablePID class to parameterize the PI block and specify the filter  as a
transfer function depending on a tunable real parameter .

C0 = tunablePID('C','pi');  % tunable PI

a = realp('a',1);    % filter coefficient
F0 = tf(a,[1 a]);    % filter parameterized by a

Loop Shaping Design

Loop shaping is a frequency-domain technique for enforcing requirements on response
speed, control bandwidth, roll-off, and steady state error. The idea is to specify a target
gain profile or "loop shape" for the open-loop response . A
reasonable loop shape for this application should have integral action and a crossover
frequency of about 1000 rad/s (the reciprocal of the desired response time of 0.001
seconds). This suggests the following loop shape:

wc = 1000;  % target crossover
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);
bodemag(LS,{1e1,1e5}), grid, title('Target loop shape')
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Note that we chose a bi-proper, bi-stable realization to avoid technical difficulties with
marginally stable poles and improper inverses. In order to tune  and  with
hinfstruct, we must turn this target loop shape into constraints on the closed-loop
gains. A systematic way to go about this is to instrument the feedback loop as follows:

• Add a measurement noise signal n
• Use the target loop shape LS and its reciprocal to filter the error signal e and the

white noise source nw.
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Figure 2: Closed-Loop Formulation

If  denotes the closed-loop transfer function from (r,nw) to (y,ew), the gain
constraint

secures the following desirable properties:

• At low frequency (w<wc), the open-loop gain stays above the gain specified by the
target loop shape LS

• At high frequency (w>wc), the open-loop gain stays below the gain specified by LS
• The closed-loop system has adequate stability margins
• The closed-loop step response has small overshoot.

We can therefore focus on tuning  and  to enforce .

Specifying the Control Structure in MATLAB

In MATLAB, you can use the connect command to model  by connecting the fixed
and tunable components according to the block diagram of Figure 2:
% Label the block I/Os
Wn = 1/LS;  Wn.u = 'nw';  Wn.y = 'n';
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We = LS;    We.u = 'e';   We.y = 'ew';
C0.u = 'e';   C0.y = 'u';
F0.u = 'yn';  F0.y = 'yf';

% Specify summing junctions
Sum1 = sumblk('e = r - yf');
Sum2 = sumblk('yn = y + n');

% Connect the blocks together
T0 = connect(G,Wn,We,C0,F0,Sum1,Sum2,{'r','nw'},{'y','ew'});

These commands construct a generalized state-space model T0 of . This model
depends on the tunable blocks C and a:

T0.Blocks

ans = 

  struct with fields:

    C: [1x1 tunablePID]
    a: [1x1 realp]

Note that T0 captures the following "Standard Form" of the block diagram of Figure 2
where the tunable components  are separated from the fixed dynamics.
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Figure 3: Standard Form for Disk-Drive Loop Shaping

Tuning the Controller Gains

We are now ready to use hinfstruct to tune the PI controller  and filter  for the
control architecture of Figure 1. To mitigate the risk of local minima, run three
optimizations, two of which are started from randomized initial values for C0 and F0:

rng('default')
opt = hinfstructOptions('Display','final','RandomStart',5);
T = hinfstruct(T0,opt);

Final: Peak gain = 3.66, Iterations = 112
Final: Peak gain = 597, Iterations = 195
       Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Peak gain = 597, Iterations = 199
       Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Peak gain = 1.56, Iterations = 122
Final: Peak gain = 3.88, Iterations = 99
Final: Peak gain = 1.56, Iterations = 81

The best closed-loop gain is 1.56, so the constraint  is nearly satisfied. The
hinfstruct command returns the tuned closed-loop transfer . Use showTunable to
see the tuned values of  and the filter coefficient :
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showTunable(T)

C =
 
             1 
  Kp + Ki * ---
             s 

  with Kp = 0.000846, Ki = 0.0103
 
Name: C
Continuous-time PI controller in parallel form.
-----------------------------------
a = 5.49e+03

Use getBlockValue to get the tuned value of  and use getValue to evaluate the
filter  for the tuned value of :

C = getBlockValue(T,'C');
F = getValue(F0,T.Blocks);  % propagate tuned parameters from T to F

tf(F)

ans =
 
  From input "yn" to output "yf":
    5486
  --------
  s + 5486
 
Continuous-time transfer function.

To validate the design, plot the open-loop response L=F*G*C and compare with the target
loop shape LS:

bode(LS,'r--',G*C*F,'b',{1e1,1e6}), grid,
title('Open-loop response'), legend('Target','Actual')
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The 0dB crossover frequency and overall loop shape are as expected. The stability
margins can be read off the plot by right-clicking and selecting the Characteristics
menu. This design has 24dB gain margin and 81 degrees phase margin. Plot the closed-
loop step response from reference r to position y:

step(feedback(G*C,F)), grid, title('Closed-loop response')
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While the response has no overshoot, there is some residual wobble due to the first
resonant peaks in G. You might consider adding a notch filter in the forward path to
remove the influence of these modes.

Tuning the Controller Gains from Simulink

Suppose you used this Simulink model to represent the control structure. If you have
Simulink Control Design installed, you can tune the controller gains from this Simulink
model as follows. First mark the signals r,e,y,n as Linear Analysis points in the
Simulink model.
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Then create an instance of the slTuner interface and mark the Simulink blocks C and F
as tunable:

ST0 = slTuner('rct_diskdrive',{'C','F'});

Since the filter  has a special structure, explicitly specify how to parameterize the F
block:

a = realp('a',1);    % filter coefficient
setBlockParam(ST0,'F',tf(a,[1 a]));

Finally, use getIOTransfer to derive a tunable model of the closed-loop transfer
function  (see Figure 2)

% Compute tunable model of closed-loop transfer (r,n) -> (y,e)
T0 = getIOTransfer(ST0,{'r','n'},{'y','e'});

% Add weighting functions in n and e channels
T0 = blkdiag(1,LS) * T0 * blkdiag(1,1/LS);

You are now ready to tune the controller gains with hinfstruct:
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rng(0)
opt = hinfstructOptions('Display','final','RandomStart',5);
T = hinfstruct(T0,opt);

Final: Peak gain = 3.9, Iterations = 126
Final: Peak gain = 598, Iterations = 189
       Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Peak gain = 597, Iterations = 200
       Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Peak gain = 3.88, Iterations = 102
Final: Peak gain = 1.56, Iterations = 98
Final: Peak gain = 1.56, Iterations = 120

Verify that you obtain the same tuned values as with the MATLAB approach:

showTunable(T)

C =
 
             1 
  Kp + Ki * ---
             s 

  with Kp = 0.000846, Ki = 0.0103
 
Name: C
Continuous-time PI controller in parallel form.
-----------------------------------
a = 5.49e+03

See Also
hinfstruct

Related Examples
• “What Is a Fixed-Structure Control System?” on page 7-2

 See Also
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